車(chē)載GPT爆紅前夜:一場(chǎng)巨頭競(jìng)逐的游戲
在基于GPT-3.5的ChatGPT問(wèn)世之前,OpenAI作為深度學(xué)習(xí)領(lǐng)域并不大為人所看好的技術(shù)分支玩家,已經(jīng)在GPT這個(gè)賽道默默耕耘了七八年的時(shí)間。
好幾年的時(shí)間里,GPT始終沒(méi)有跨越從“不能用”到“能用”的奇點(diǎn)。轉(zhuǎn)折點(diǎn)發(fā)生在2020年6月份發(fā)布的GPT-3,從這一版本開(kāi)始,GPT可以做比較出色的文本生成工作了,初步具備了“智慧涌現(xiàn)”能力。
再后來(lái),OpenAI在GPT-3.5里加入了個(gè)人機(jī)交互界面,做了聊天機(jī)器人ChatGPT,迅速席卷全球,在短短的兩個(gè)月的時(shí)間里,用戶(hù)數(shù)量迅速突破1億大關(guān)。
圖片來(lái)源:英偉達(dá)
海外的谷歌、Meta、特斯拉,國(guó)內(nèi)的百度、華為、阿里、字節(jié)這些互聯(lián)網(wǎng)巨頭紛紛加碼在GPT大模型上的投入,再后來(lái),本土電動(dòng)車(chē)企形形色色的GPT也陸續(xù)問(wèn)世了。
自2023年第四季度開(kāi)始,問(wèn)界M9上的盤(pán)古大模型、理想OTA5.0里的Mind GPT,蔚來(lái)汽車(chē)上的NOMI GPT、小鵬XOS天璣系統(tǒng)里的XGPT陸續(xù)上車(chē),不僅幫你寫(xiě)詩(shī),還能幫你做事。
那么,這些車(chē)載GPT是如何橫空出世的,它們又將為汽車(chē)上帶來(lái)何種變化呢?
一、大模型上車(chē):開(kāi)源 VS 閉源
早期,沒(méi)有在大模型方面布局的本土車(chē)企是借助國(guó)內(nèi)外開(kāi)源的基礎(chǔ)大模型自研GPT,這應(yīng)該也算是業(yè)內(nèi)公開(kāi)的秘密。原因無(wú)他,真正自研大模型實(shí)在太消耗資源了。
大模型的賽道非常卷。為了縮短訓(xùn)練時(shí)間,且提高訓(xùn)練效率,OpenAI、谷歌、Meta這些巨頭的基礎(chǔ)大模型都是投入大幾千張甚至幾萬(wàn)張A100、H100顯卡訓(xùn)練出來(lái)的。
1萬(wàn)張A100大約對(duì)應(yīng)3.12E的訓(xùn)練算力。公開(kāi)信息顯示,國(guó)內(nèi)頭部車(chē)企里,華為用在汽車(chē)業(yè)務(wù)上的訓(xùn)練算力3.5E,百度為2.2E,蔚小理的算力規(guī)模都在1E左右。
在一次訪談中,馬斯克透露過(guò)xAI的Grok(據(jù)說(shuō)要上特斯拉的車(chē))訓(xùn)練投入了8000張A100。從GPU小時(shí)來(lái)算,且不說(shuō)這些閉源的參數(shù)量奔著萬(wàn)億級(jí)別而去的大模型,即便那些開(kāi)源大模型,其消耗的GPU資源都是不可承擔(dān)之重。
據(jù)悉,Meta開(kāi)源的LLaMA-2-70B的大模型,使用了2000個(gè)英偉達(dá)A100訓(xùn)練,耗費(fèi)了172萬(wàn)個(gè)GPU小時(shí);地表最強(qiáng)開(kāi)源大模型Falcon-180B,使用了4096個(gè)A100 GPU,耗費(fèi)了約700萬(wàn) GPU小時(shí)進(jìn)行訓(xùn)練。
來(lái)源:馬斯克訪談
無(wú)論從什么角度,不以大模型為主業(yè)的本土車(chē)企,都不可能為這個(gè)賽道投入這么巨大的資源,而且,幾萬(wàn)張A100/H100(百億美金)遠(yuǎn)不是這些現(xiàn)在基本上還無(wú)法盈利、只能依靠資本市場(chǎng)輸血的車(chē)企所能承擔(dān)的了的。
所以,采用開(kāi)源大模型自研可滿(mǎn)足車(chē)用場(chǎng)景的GPT,成了本土車(chē)企的捷徑,也幾乎是唯一可行的路徑。
只有少數(shù)巨頭強(qiáng)勢(shì)賦能的車(chē)企,才會(huì)采用了自研基礎(chǔ)大模型的方案。比如,華為系的問(wèn)界、智界和百度系的極越,真要算起來(lái),華為的盤(pán)古大模型和百度的文心一言問(wèn)世的時(shí)間也不短了。
稍許遺憾的是,這兩個(gè)大模型至今沒(méi)有產(chǎn)生破圈效應(yīng),GPT上車(chē)的時(shí)間也并沒(méi)有比蔚小理早很多。
這背后有一系列復(fù)雜的原因。
一方面,正如華為高管在2023年的華為開(kāi)發(fā)者大會(huì)上所說(shuō)的那樣,“我們的大模型不做詩(shī),只做事”,因?yàn)橐恢弊鲋鴗o B的生意,沒(méi)有to C,所以沒(méi)有被大眾所熟知。
另一方面,盤(pán)古大模型和文心一言之前基礎(chǔ)能力不足,基礎(chǔ)能力的不足來(lái)自于參數(shù)規(guī)模比較小、訓(xùn)練數(shù)據(jù)和訓(xùn)練時(shí)間不足。
必須承認(rèn),直到OpenAI的ChatGPT問(wèn)世之后,整個(gè)行業(yè)及業(yè)界專(zhuān)家才真正接受了比例定律Scaling Law,建立了可以通過(guò)擴(kuò)大模型規(guī)模、增加訓(xùn)練數(shù)據(jù)量、延長(zhǎng)訓(xùn)練時(shí)間實(shí)現(xiàn)模型性能持續(xù)提升的“信仰”。
信仰不足、意見(jiàn)不一是之前不夠大的大模型基礎(chǔ)能力不足,從而沒(méi)有產(chǎn)生破圈效應(yīng)的重要原因。
即便認(rèn)可了比例定律的第一性原理,要從千億參數(shù)邁進(jìn)到萬(wàn)億參數(shù),也需要對(duì)模型設(shè)計(jì)做大量的科研工作,才能解決參數(shù)數(shù)量級(jí)提升引發(fā)的梯度爆炸等一系列問(wèn)題。
無(wú)論如何,雖然同是率先將大模型技術(shù)搬上汽車(chē)的第一陣營(yíng),華為(問(wèn)界和智界)/百度(極越)的大模型上車(chē)路徑和蔚小理還是有著明顯的區(qū)別,其本質(zhì)的區(qū)別就在于前兩家的基礎(chǔ)大模型來(lái)自自力更生,而新勢(shì)力的基礎(chǔ)大模型很大可能來(lái)自于業(yè)界的開(kāi)源方案。
二、 專(zhuān)心做訓(xùn)練也是一種自研
除了參數(shù)量達(dá)到1800億的Falcon-180B(去年9月份開(kāi)源),開(kāi)源基礎(chǔ)大模型的參數(shù)一般都在幾百億級(jí)別。這是巨頭的游戲。
扎克伯格的Meta是開(kāi)源大模型的主要貢獻(xiàn)者,它們開(kāi)源的LLaMA-70B的參數(shù)在700億左右。
另一玩家是谷歌,也許是意識(shí)到了無(wú)法打敗OpenAI,帶著攪局或者不想讓OpenAI壟斷基礎(chǔ)大模型市場(chǎng)的心思,谷歌正加快開(kāi)源的動(dòng)作,它最近開(kāi)源了兩個(gè)大模型——Gemma 2B和7B,可分別在端側(cè)和云端部署。
根據(jù)這些巨頭宣布開(kāi)源大模型的時(shí)間做一個(gè)推論,蔚小理等本土車(chē)企們用的開(kāi)源大模型的參數(shù)量大概在千億左右。
這些開(kāi)源基礎(chǔ)大模型提供的不只是模型結(jié)構(gòu)的細(xì)節(jié),更重要的是,它們經(jīng)過(guò)了萬(wàn)億Token的訓(xùn)練,模型里的權(quán)重參數(shù)已經(jīng)是完成度很高的可用狀態(tài)。對(duì)于基于開(kāi)源大模型做訓(xùn)練的車(chē)企而言,要做的工作是尋找或建立能夠適用于車(chē)用場(chǎng)景的數(shù)據(jù)集,再進(jìn)行微調(diào)訓(xùn)練。
在開(kāi)源基礎(chǔ)大模型上面做定制,從而訓(xùn)練出微調(diào)大模型的過(guò)程,就好比學(xué)霸上完了高中,并將他腦袋里成熟的神經(jīng)網(wǎng)絡(luò)復(fù)刻到你的腦袋里,然后你再去上大學(xué)選個(gè)專(zhuān)業(yè),在這個(gè)專(zhuān)業(yè)領(lǐng)域單兵突進(jìn),繼續(xù)深造。
比如,現(xiàn)在有專(zhuān)門(mén)面向醫(yī)療行業(yè)、財(cái)稅行業(yè)的大模型,同樣是在基礎(chǔ)大模型之訓(xùn)練出來(lái)的。
再比如,一小撮程序員訓(xùn)練出來(lái)志在消滅大多數(shù)程序員的軟件開(kāi)發(fā)者大模型——GitHub Copilot,和最近讓碼農(nóng)們聞風(fēng)喪膽的Davin。
圖片來(lái)源:GitHub
和華為系、百度系相比,蔚小理的GPT在參數(shù)量上也許小了一個(gè)數(shù)量級(jí),但這并不意味著NOMI GPT們?cè)谲?chē)載場(chǎng)景下的專(zhuān)項(xiàng)能力一定會(huì)低于華為/百度系車(chē)企,幾百億參數(shù)的大模型足以將文本形式的所有人類(lèi)知識(shí)壓縮進(jìn)去。
再者,加大訓(xùn)練數(shù)據(jù)規(guī)模同樣可以提升大模型的表現(xiàn),可以認(rèn)為,數(shù)據(jù)集的作用并不亞于模型參數(shù)。
在2023年的微軟Build大會(huì)上,Andrej Karpathy大神在闡釋參數(shù)量和Token數(shù)量對(duì)大模型性能的影響時(shí),對(duì)2020年問(wèn)世的GPT-3和2023年問(wèn)世的LLaMA-65B做過(guò)對(duì)比。
圖片來(lái)源:微軟Build大會(huì)
2020年發(fā)布的GPT-3的參數(shù)量為1750億,訓(xùn)練Token數(shù)量為3000億(隨著時(shí)間的增加,會(huì)繼續(xù)追加訓(xùn)練數(shù)據(jù)規(guī)模),LLaMA-65B的參數(shù)量為650億,用于訓(xùn)練的Token數(shù)量介于1萬(wàn)億-1.4萬(wàn)億之間。
GPT-3參數(shù)量更大,表現(xiàn)卻不及LLaMA-65B,背后的主要原因就在于LLaMA進(jìn)行了更加充分的訓(xùn)練。
在訓(xùn)練上,其他玩家也可以站在巨人的肩膀上,向訓(xùn)練完備、表現(xiàn)出色的大模型投喂更多的訓(xùn)練語(yǔ)料。而且,在一定程度上,語(yǔ)料庫(kù)也是現(xiàn)成的。
過(guò)去幾十年,除了尋求如何設(shè)計(jì)更加可泛化的推理機(jī)制,設(shè)計(jì)可通向人類(lèi)通用能力和常識(shí)的神經(jīng)網(wǎng)絡(luò)和大模型,人工智能研究人員還把大量的精力放在了孜孜不倦地構(gòu)建包含大量常識(shí)語(yǔ)料庫(kù)的知識(shí)庫(kù)上面。
比如,用于訓(xùn)練和評(píng)估用于檢測(cè)機(jī)器釋義文本模型的Identifying Machine-Paraphrased Plagiarism、通用文本分類(lèi)數(shù)據(jù)集Wikipedia、Reddit 和 Stack Exchange、QA 數(shù)據(jù)集Quoref 、 基于文本的問(wèn)答數(shù)據(jù)集TriviaQA等等。
這背后有大量的工作要做。因?yàn),和基礎(chǔ)大模型可以通過(guò)無(wú)監(jiān)督、無(wú)需標(biāo)注的數(shù)據(jù)進(jìn)行訓(xùn)練不同,在基礎(chǔ)大模型之上進(jìn)行微調(diào)訓(xùn)練時(shí),需要通過(guò)有監(jiān)督和基于人類(lèi)反饋的強(qiáng)化學(xué)習(xí)形式,在標(biāo)注過(guò)的高質(zhì)量數(shù)據(jù)集上進(jìn)行訓(xùn)練,通過(guò)對(duì)話(huà)形式進(jìn)行專(zhuān)項(xiàng)能力訓(xùn)練,工作量也不容小覷。
圖片來(lái)源: Andrej Karpathy
三、大模型上車(chē)的部署路徑
大模型自有其訓(xùn)練機(jī)制,在車(chē)端的部署路徑也日益清晰。
按照難易程度和各個(gè)頭部車(chē)企的大模型上車(chē)實(shí)踐,可以做出一個(gè)比較清晰合理的判斷:大模型將全面改造智能座艙,并有望在幾年后真正部署在智能駕駛方案中。
智能座艙是人機(jī)交互集中發(fā)生的地方,人和機(jī)器或智能體的交互主要體現(xiàn)在機(jī)器對(duì)人類(lèi)意圖的理解、記憶和推理三個(gè)方面,大模型天然具備超強(qiáng)的理解和生成能力,并可以通過(guò)提高上下文的長(zhǎng)度增強(qiáng)記憶能力,再加上智能座艙的容錯(cuò)能力特別強(qiáng),所以,從技術(shù)和應(yīng)用場(chǎng)景的契合度上,大模型和智能座艙可謂天作之合,也必然大幅度提升人機(jī)交互體驗(yàn)。
理想汽車(chē)在MEGA發(fā)布會(huì)上,介紹了Mind GPT的四大落地場(chǎng)景:百科老師、用車(chē)助手、出行助手和娛樂(lè)助手,基本總結(jié)了大模型技術(shù)當(dāng)前在智能座艙領(lǐng)域的幾個(gè)用武之地。
圖片來(lái)源:理想汽車(chē)
自動(dòng)駕駛領(lǐng)域也是大模型可以大顯身手的地方。
大模型對(duì)自動(dòng)駕駛的意義目前主要體現(xiàn)在加快算法開(kāi)發(fā)和模型迭代速度上,比如毫末智行發(fā)布的大模型DriveGPT雪湖·海若可以在“訓(xùn)練階段”進(jìn)行數(shù)據(jù)的篩選、挖掘、自動(dòng)標(biāo)注,在“仿真階段”生成測(cè)試場(chǎng)景。
不過(guò),由于自動(dòng)駕駛對(duì)安全性的要求特別高,對(duì)實(shí)時(shí)性的要求也極為嚴(yán)苛,要在車(chē)端部署大模型形式的自動(dòng)駕駛方案還需要很長(zhǎng)一段時(shí)間。
業(yè)界還在探索在“開(kāi)發(fā)階段”利用大模型(生成式的多模態(tài)大視覺(jué)語(yǔ)言模型),比如理想汽車(chē)最近和清華聯(lián)手開(kāi)發(fā)的DriveVLM,部署在英偉達(dá)Orin X上的話(huà),推理能力需要0.3秒。
0.3秒是個(gè)什么概念?就是如果你以20米每秒(對(duì)應(yīng)72公里每小時(shí))的速度開(kāi)車(chē),0.3秒可以跑出去6米。。。這還僅僅是考慮到了實(shí)時(shí)性這個(gè)單一因素,還沒(méi)有涉及到大模型的幻覺(jué)對(duì)安全性的威脅。
所以,大模型改造智能座艙可謂指日可待,但用在自動(dòng)駕駛方面,只能說(shuō)任重道遠(yuǎn),未來(lái)可期。
總體上,面對(duì)激烈的市場(chǎng)競(jìng)爭(zhēng),本土車(chē)企不能放過(guò)任何一個(gè)風(fēng)口,大模型這種超級(jí)大的風(fēng)口絕對(duì)不能錯(cuò)過(guò),其他車(chē)企今年會(huì)陸續(xù)傳來(lái)大模型上車(chē)的消息,這一點(diǎn)基本上毋庸置疑。
接下來(lái)這一年,大家可能需要做好迎接各種車(chē)載大模型炫技的測(cè)評(píng)視頻滿(mǎn)天飛的準(zhǔn)備,不過(guò),也不用太理會(huì)他們說(shuō)的怎么天花亂墜,大模型從“能用”到真正“好用”,再到產(chǎn)生破圈效應(yīng),諸位且耐心等一等吧。
原文標(biāo)題 : 車(chē)載GPT爆紅前夜:一場(chǎng)巨頭競(jìng)逐的游戲
發(fā)表評(píng)論
請(qǐng)輸入評(píng)論內(nèi)容...
請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字
最新活動(dòng)更多
-
10月31日立即下載>> 【限時(shí)免費(fèi)下載】TE暖通空調(diào)系統(tǒng)高效可靠的組件解決方案
-
即日-11.13立即報(bào)名>>> 【在線(xiàn)會(huì)議】多物理場(chǎng)仿真助跑新能源汽車(chē)
-
11月28日立即報(bào)名>>> 2024工程師系列—工業(yè)電子技術(shù)在線(xiàn)會(huì)議
-
12月19日立即報(bào)名>> 【線(xiàn)下會(huì)議】OFweek 2024(第九屆)物聯(lián)網(wǎng)產(chǎn)業(yè)大會(huì)
-
即日-12.26火熱報(bào)名中>> OFweek2024中國(guó)智造CIO在線(xiàn)峰會(huì)
-
即日-2025.8.1立即下載>> 《2024智能制造產(chǎn)業(yè)高端化、智能化、綠色化發(fā)展藍(lán)皮書(shū)》
推薦專(zhuān)題
- 1 【一周車(chē)話(huà)】沒(méi)有方向盤(pán)和踏板的車(chē),你敢坐嗎?
- 2 特斯拉發(fā)布無(wú)人駕駛車(chē),還未迎來(lái)“Chatgpt時(shí)刻”
- 3 特斯拉股價(jià)大跌15%:Robotaxi離落地還差一個(gè)蘿卜快跑
- 4 馬斯克給的“驚喜”夠嗎?
- 5 大模型“新星”開(kāi)啟變現(xiàn)競(jìng)速
- 6 海信給AI電視打樣,12大AI智能體全面升級(jí)大屏體驗(yàn)
- 7 AI 投流卷哭創(chuàng)業(yè)者
- 8 打完“價(jià)格戰(zhàn)”,大模型還要比什么?
- 9 馬斯克致敬“國(guó)產(chǎn)蘿卜”?
- 10 神經(jīng)網(wǎng)絡(luò),誰(shuí)是盈利最強(qiáng)企業(yè)?
- 高級(jí)軟件工程師 廣東省/深圳市
- 自動(dòng)化高級(jí)工程師 廣東省/深圳市
- 光器件研發(fā)工程師 福建省/福州市
- 銷(xiāo)售總監(jiān)(光器件) 北京市/海淀區(qū)
- 激光器高級(jí)銷(xiāo)售經(jīng)理 上海市/虹口區(qū)
- 光器件物理工程師 北京市/海淀區(qū)
- 激光研發(fā)工程師 北京市/昌平區(qū)
- 技術(shù)專(zhuān)家 廣東省/江門(mén)市
- 封裝工程師 北京市/海淀區(qū)
- 結(jié)構(gòu)工程師 廣東省/深圳市