訂閱
糾錯(cuò)
加入自媒體

自動(dòng)駕駛領(lǐng)頭羊Waymo十周年奉獻(xiàn):Auto ML機(jī)器學(xué)習(xí)

2019-01-17 10:12
車智
關(guān)注

美國(guó)當(dāng)?shù)貢r(shí)間1月16日,全球自動(dòng)駕駛領(lǐng)頭羊Waymo,發(fā)布了十年周年慶祝短視頻,并且在官方博客上發(fā)布了關(guān)于“Auto ML(Auto Machine Learning)”的文章,深度剖析了Auto ML與Google AI大腦,是如何幫助Waymo發(fā)展自動(dòng)駕駛技術(shù)的。

在Waymo的官方推特上寫著:十年前的這個(gè)星期,“項(xiàng)目司機(jī)”正式成立,其使命是改善道路安全,使交通更加便利。從這個(gè)“登月”項(xiàng)目,到谷歌自動(dòng)駕駛汽車項(xiàng)目,現(xiàn)在是Waymo,一起為下一個(gè)十年及更遠(yuǎn)的將來而努力!

下面是關(guān)于Auto ML的文章,在Waymo,機(jī)器學(xué)習(xí)幾乎在自動(dòng)駕駛系統(tǒng)的每個(gè)部分都扮演著關(guān)鍵角色。它幫助我們的汽車看清周圍的環(huán)境,理解世界,預(yù)測(cè)他人的行為,并決定他們下一步的最佳行動(dòng)。

以感知為例,Waymo的系統(tǒng)采用了神經(jīng)網(wǎng)絡(luò)的組合,使Waymo的車輛能夠解讀傳感器數(shù)據(jù)、識(shí)別物體,并隨著時(shí)間的推移跟蹤它們,從而對(duì)周圍的世界有一個(gè)深入的了解。

創(chuàng)建這些神經(jīng)網(wǎng)絡(luò)通常是一項(xiàng)耗時(shí)的任務(wù):優(yōu)化神經(jīng)網(wǎng)絡(luò)架構(gòu),以達(dá)到自動(dòng)駕駛汽車運(yùn)行所需的質(zhì)量和速度,是一個(gè)復(fù)雜的微調(diào)過程,Waymo工程師可能需要數(shù)月時(shí)間來完成一項(xiàng)新任務(wù)。

現(xiàn)在,通過與來自Google AI大腦的研究人員合作,Waymo正在將前沿研究付諸實(shí)踐,以自動(dòng)生成神經(jīng)網(wǎng)絡(luò)。更重要的是,這些最先進(jìn)的神經(jīng)網(wǎng)絡(luò)比那些由工程師手工調(diào)整的神經(jīng)網(wǎng)絡(luò)質(zhì)量更高、速度更快。

為了將Waymo的自動(dòng)駕駛技術(shù)應(yīng)用到不同的城市和環(huán)境中,需要針對(duì)不同的場(chǎng)景快速優(yōu)化Waymo的模型。Auto ML使Waymo能夠做到這一點(diǎn),高效和連續(xù)地提供大量ML解決方案。

01 遷移學(xué)習(xí):使用現(xiàn)有的自動(dòng)化架構(gòu)

Waymo和Google AI大腦的合作始于一個(gè)簡(jiǎn)單的問題:Auto ML能否為汽車生成高質(zhì)量、低延遲的神經(jīng)網(wǎng)絡(luò)?

質(zhì)量衡量的標(biāo)準(zhǔn)是由神經(jīng)網(wǎng)絡(luò)產(chǎn)生的答案的準(zhǔn)確性,延遲度量網(wǎng)絡(luò)提供答案的速度,也稱為推理時(shí)間。由于駕駛是一種活動(dòng),它要求車輛使用實(shí)時(shí)答案,并且考慮到系統(tǒng)的安全性,神經(jīng)網(wǎng)絡(luò)需要在低延遲的情況下運(yùn)行。大多數(shù)網(wǎng)絡(luò)直接運(yùn)行在Waymo的車輛上,結(jié)果少于10毫秒,這比部署在數(shù)千臺(tái)服務(wù)器上的數(shù)據(jù)中心中的許多網(wǎng)絡(luò)要快。

在原來的Auto ML論文(Learning Transferable Architectures for Scalable ImageRecognition PDF,獲取方式見文末),谷歌AI的員工能夠自動(dòng)探索12000多個(gè)架構(gòu)解決CIFAR-10的經(jīng)典圖像識(shí)別任務(wù):確定一個(gè)小形象代表十個(gè)類別之一,比如買一輛汽車、飛機(jī)、一只狗,等等。

在后續(xù)文章(NEURAL ARCHITECTURE SEARCH WITHREINFORCEMENT LEARNING

PDF,獲取方式見文末),他們發(fā)現(xiàn)了一個(gè)家庭的神經(jīng)網(wǎng)絡(luò)的構(gòu)建塊,稱為NAS單元,這可能是由自動(dòng)構(gòu)建比手工網(wǎng)CIFAR-10和類似的任務(wù)。通過這種合作,Waymo的研究人員決定使用這些單元來自動(dòng)構(gòu)建針對(duì)自動(dòng)駕駛?cè)蝿?wù)的新模型,從而將CIFAR-10上的知識(shí)轉(zhuǎn)移到汽車領(lǐng)域,第一個(gè)實(shí)驗(yàn)是語(yǔ)義分割任務(wù):識(shí)別激光雷達(dá)點(diǎn)云中的每個(gè)點(diǎn),如汽車、行人、樹等。

圖一:一個(gè)NAS單元的例子,這個(gè)單元在神經(jīng)網(wǎng)絡(luò)中處理前兩層的輸入

為此,Waymo研究人員建立了一個(gè)自動(dòng)搜索算法,在卷積網(wǎng)絡(luò)架構(gòu)(CNN)中探索數(shù)百種不同的NAS單元組合,為Waymo的激光雷達(dá)分割任務(wù)訓(xùn)練和評(píng)估模型。當(dāng)Waymo的工程師手工調(diào)整這些網(wǎng)絡(luò)時(shí),只能探索有限數(shù)量的架構(gòu),但是使用這種方法,可以自動(dòng)探索了數(shù)百個(gè)架構(gòu)。

相比以前的人工微調(diào)優(yōu)化神經(jīng)網(wǎng)絡(luò),Auto ML通過下面兩種方式來改進(jìn):

一些具有類似質(zhì)量的延遲顯著降低;

其他的則具有更高的質(zhì)量和類似的延遲。

初步成功后,Waymo將相同的搜索算法應(yīng)用于另外兩個(gè)與交通車道檢測(cè)和定位相關(guān)的任務(wù),轉(zhuǎn)移學(xué)習(xí)技術(shù)也適用于這些任務(wù),最后能夠在汽車上部署三個(gè)新訓(xùn)練和改進(jìn)的神經(jīng)網(wǎng)絡(luò)。

十年前的Waymo自動(dòng)駕駛汽車(普銳斯)

1  2  下一頁(yè)>  
聲明: 本文由入駐維科號(hào)的作者撰寫,觀點(diǎn)僅代表作者本人,不代表OFweek立場(chǎng)。如有侵權(quán)或其他問題,請(qǐng)聯(lián)系舉報(bào)。

發(fā)表評(píng)論

0條評(píng)論,0人參與

請(qǐng)輸入評(píng)論內(nèi)容...

請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字

您提交的評(píng)論過于頻繁,請(qǐng)輸入驗(yàn)證碼繼續(xù)

  • 看不清,點(diǎn)擊換一張  刷新

暫無(wú)評(píng)論

暫無(wú)評(píng)論

人工智能 獵頭職位 更多
掃碼關(guān)注公眾號(hào)
OFweek人工智能網(wǎng)
獲取更多精彩內(nèi)容
文章糾錯(cuò)
x
*文字標(biāo)題:
*糾錯(cuò)內(nèi)容:
聯(lián)系郵箱:
*驗(yàn) 證 碼:

粵公網(wǎng)安備 44030502002758號(hào)