訂閱
糾錯
加入自媒體

大道至簡——RISC-V架構之魂(中)

2020-06-06 12:21
TXP嵌入式
關注

本文為《RISC-V CPU設計》專欄和《RISC-V嵌入式軟件開發(fā)》專欄系列文章之一。

注:本文節(jié)選自“硅農(nóng)亞歷山大”所著國內(nèi)第一本系統(tǒng)介紹CPU與RISC-V設計的中文書籍《手把手教你設計CPU:RISC-V處理器篇》(預計將于2018年3~4月上市)。

“大道至簡——RISC-V架構之魂”——分成上中下三篇,本文是中篇。關注文末公眾號后可查詢上中下三篇的內(nèi)容。

本文上接《大道至簡——RISC-V架構之魂(上)》

2.3 規(guī)整的指令編碼

在流水線中能夠盡早盡快的讀取通用寄存器組,往往是處理器流水線設計的期望之一,這樣可以提高處理器性能和優(yōu)化時序。這個看似簡單的道理在很多現(xiàn)存的商用RISC架構中都難以實現(xiàn),因為經(jīng)過多年反復修改不斷添加新指令后,其指令編碼中的寄存器索引位置變得非常的凌亂,給譯碼器造成了負擔。

得益于后發(fā)優(yōu)勢和總結了多年來處理器發(fā)展的教訓,RISC-V的指令集編碼非常的規(guī)整,指令所需的通用寄存器的索引(Index)都被放在固定的位置,如圖2所示。因此指令譯碼器(Instruction Decoder)可以非常便捷的譯碼出寄存器索引然后讀取通用寄存器組(Register File,Regfile)。

圖2 RV32I規(guī)整的指令編碼格式

2.4 簡潔的存儲器訪問指令

與所有的RISC處理器架構一樣,RISC-V架構使用專用的存儲器讀(Load)指令和存儲器寫(Store)指令訪問存儲器(Memory),其他的普通指令無法訪問存儲器,這種架構是RISC架構的常用的一個基本策略,這種策略使得處理器核的硬件設計變得簡單。

存儲器訪問的基本單位是字節(jié)(Byte)。RISC-V的存儲器讀和存儲器寫指令支持一個字節(jié)(8位),半字(16位),單字(32位)為單位的存儲器讀寫操作,如果是64位架構還可以支持一個雙字(64位)為單位的存儲器讀寫操作。

RISC-V架構的存儲器訪問指令還有如下顯著特點:

為了提高存儲器讀寫的性能,RISC-V架構推薦使用地址對齊的存儲器讀寫操作,但是地址非對齊的存儲器操作RISC-V架構也支持,處理器可以選擇用硬件來支持,也可以選擇用軟件來支持。

由于現(xiàn)在的主流應用是小端格式(Little-Endian),RISC-V架構僅支持小端格式。有關小端格式和大端格式的定義和區(qū)別,本文在此不做過多介紹,若對此不甚了解的初學者可以自行查閱學習。

很多的RISC處理器都支持地址自增或者自減模式,這種自增或者自減的模式雖然能夠提高處理器訪問連續(xù)存儲器地址區(qū)間的性能,但是也增加了設計處理器的難度。RISC-V架構的存儲器讀和存儲器寫指令不支持地址自增自減的模式。

RISC-V架構采用松散存儲器模型(Relaxed Memory Model),松散存儲器模型對于訪問不同地址的存儲器讀寫指令的執(zhí)行順序不作要求,除非使用明確的存儲器屏障(Fence)指令加以屏蔽。

這些選擇都清楚地反映了RISC-V架構力圖簡化基本指令集,從而簡化硬件設計的哲學。RISC-V架構如此定義非常合理,能夠達到能屈能伸的效果。譬如:對于低功耗的簡單CPU,可以使用非常簡單的硬件電路即可完成設計;而對于追求高性能的超標量處理器則可以通過復雜設計的動態(tài)硬件調(diào)度能力來提高性能。

2.5 高效的分支跳轉指令

RISC-V架構有兩條無條件跳轉指令(Unconditional Jump),jal與jalr指令。跳轉鏈接(Jump and Link)指令jal可用于進行子程序調(diào)用,同時將子程序返回地址存在鏈接寄存器(Link Register:由某一個通用整數(shù)寄存器擔任)中。跳轉鏈接寄存器(Jump and Link-Register)指令jalr指令能夠用于子程序返回指令,通過將jal指令(跳轉進入子程序)保存的鏈接寄存器用于jalr指令的基地址寄存器,則可以從子程序返回。

RISC-V架構有6條帶條件跳轉指令(Conditional Branch),這種帶條件的跳轉指令跟普通的運算指令一樣直接使用2個整數(shù)操作數(shù),然后對其進行比較,如果比較的條件滿足時,則進行跳轉。因此,此類指令將比較與跳轉兩個操作放到了一條指令里完成。

作為比較,很多的其他RISC架構的處理器需要使用兩條獨立的指令。第一條指令先使用比較指令,比較的結果被保存到狀態(tài)寄存器之中;第二條指令使用跳轉指令,判斷前一條指令保存在狀態(tài)寄存器當中的比較結果為真時則進行跳轉。相比而言RISC-V的這種帶條件跳轉指令不僅減少了指令的條數(shù),同時硬件設計上更加簡單。

對于沒有配備硬件分支預測器的低端CPU,為了保證其性能,RISC-V的架構明確要求其采用默認的靜態(tài)分支預測機制,即:如果是向后跳轉的條件跳轉指令,則預測為“跳”;如果是向前跳轉的條件跳轉指令,則預測為“不跳”,并且RISC-V架構要求編譯器也按照這種默認的靜態(tài)分支預測機制來編譯生成匯編代碼,從而讓低端的CPU也能得到不錯的性能。

為了使硬件設計盡量簡單,RISC-V架構特地定義了所有的帶條件跳轉指令跳轉目標的偏移量(相對于當前指令的地址)都是有符號數(shù),并且其符號位被編碼在固定的位置。因此,這種靜態(tài)預測機制在硬件上非常容易實現(xiàn),硬件譯碼器可以輕松的找到這個固定的位置,并判斷其是0還是1來判斷其是正數(shù)還是負數(shù),如果是負數(shù)則表示跳轉的目標地址為當前地址減去偏移量,也就是向后跳轉,則預測為“跳”。當然對于配備有硬件分支預測器的高端CPU,則可以采用高級的動態(tài)分支預測機制來保證性能。

2.6 簡潔的子程序調(diào)用

為了理解此節(jié),需先對一般RISC架構中程序調(diào)用子函數(shù)的過程予以介紹,其過程如下:

進入子函數(shù)之后需要用存儲器寫(Store)指令來將當前的上下文(通用寄存器等的值)保存到系統(tǒng)存儲器的堆棧區(qū)內(nèi),這個過程通常稱為“保存現(xiàn)場”。

在退出子程序之時,需要用存儲器讀(Load)指令來將之前保存的上下文(通用寄存器等的值)從系統(tǒng)存儲器的堆棧區(qū)讀出來,這個過程通常稱為“恢復現(xiàn)場”。

“保存現(xiàn)場”和“恢復現(xiàn)場”的過程通常由編譯器編譯生成的指令來完成,使用高層語言(譬如C或者C++)開發(fā)的開發(fā)者對此可以不用太關心。高層語言的程序中直接寫上一個子函數(shù)調(diào)用即可,但是這個底層發(fā)生的“保存現(xiàn)場”和“恢復現(xiàn)場”的過程卻是實實在在地發(fā)生著(可以從編譯出的匯編語言里面看到那些“保存現(xiàn)場”和“恢復現(xiàn)場”的匯編指令),并且還需要消耗若干的CPU執(zhí)行時間。

為了加速這個“保存現(xiàn)場”和“恢復現(xiàn)場”的過程,有的RISC架構發(fā)明了一次寫多個寄存器到存儲器中(Store Multiple),或者一次從存儲器中讀多個寄存器出來(Load Multiple)的指令,此類指令的好處是一條指令就可以完成很多事情,從而減少匯編指令的代碼量,節(jié)省代碼的空間大小。但是此種“Load Multiple”和“Store Multiple”的弊端是會讓CPU的硬件設計變得復雜,增加硬件的開銷,也可能損傷時序使得CPU的主頻無法提高,筆者在曾經(jīng)設計此類處理器時便深受其苦。

RISC-V架構則放棄使用這種“Load Multiple”和“Store Multiple”指令。并解釋,如果有的場合比較介意這種“保存現(xiàn)場”和“恢復現(xiàn)場”的指令條數(shù),那么可以使用公用的程序庫(專門用于保存和恢復現(xiàn)場)來進行,這樣就可以省掉在每個子函數(shù)調(diào)用的過程中都放置數(shù)目不等的“保存現(xiàn)場”和“恢復現(xiàn)場”的指令。

此選擇再次印證了RISC-V追求硬件簡單的哲學,因為放棄“Load Multiple”和“Store Multiple”指令可以大幅簡化CPU的硬件設計,對于低功耗小面積的CPU可以選擇非常簡單的電路進行實現(xiàn),而高性能超標量處理器由于硬件動態(tài)調(diào)度能力很強,可以有強大的分支預測電路保證CPU能夠快速的跳轉執(zhí)行,從而可以選擇使用公用的程序庫(專門用于保存和恢復現(xiàn)場)的方式減少代碼量,但是同時達到高性能。

1  2  下一頁>  
聲明: 本文由入駐維科號的作者撰寫,觀點僅代表作者本人,不代表OFweek立場。如有侵權或其他問題,請聯(lián)系舉報。

發(fā)表評論

0條評論,0人參與

請輸入評論內(nèi)容...

請輸入評論/評論長度6~500個字

您提交的評論過于頻繁,請輸入驗證碼繼續(xù)

暫無評論

暫無評論

人工智能 獵頭職位 更多
掃碼關注公眾號
OFweek人工智能網(wǎng)
獲取更多精彩內(nèi)容
文章糾錯
x
*文字標題:
*糾錯內(nèi)容:
聯(lián)系郵箱:
*驗 證 碼:

粵公網(wǎng)安備 44030502002758號