訂閱
糾錯(cuò)
加入自媒體

2020年計(jì)算機(jī)視覺(jué)技術(shù)最新學(xué)習(xí)路線總結(jié) (含時(shí)間分配建議)

如今有大量的資源可以用來(lái)學(xué)習(xí)計(jì)算機(jī)視覺(jué)技術(shù),那我們?nèi)绾螐谋姸嘟坛讨羞M(jìn)行選擇呢?哪個(gè)值得我們?nèi)ネ度霑r(shí)間呢?如果你也遇到這些問(wèn)題,那么恭喜你來(lái)對(duì)地方了。我們通過(guò)理解數(shù)百種資源來(lái)選擇值得你花費(fèi)時(shí)間的資源-這就是我們首先推出本文的主要原因之一。去年,我們廣泛地專注于兩個(gè)技術(shù)的學(xué)習(xí)方法——機(jī)器學(xué)習(xí)和深度學(xué)習(xí),但是我們的社區(qū)需要更細(xì)化的學(xué)習(xí)路徑——一個(gè)結(jié)構(gòu)化的計(jì)算機(jī)視覺(jué)學(xué)習(xí)路徑。

這是可以理解的,因?yàn)橛?jì)算機(jī)視覺(jué)專家的需求和價(jià)值在業(yè)界遙遙領(lǐng)先。專門(mén)研究計(jì)算機(jī)視覺(jué)及其不同方面,你會(huì)看到大量招聘人員試圖接近你。我記得當(dāng)我開(kāi)始自己的計(jì)算機(jī)視覺(jué)之旅時(shí),我同時(shí)參考了多種資源——書(shū)籍、文章(當(dāng)時(shí)并不多)、YouTube視頻等等。因此,我很高興有機(jī)會(huì)為你整理這種結(jié)構(gòu)化的計(jì)算機(jī)視覺(jué)學(xué)習(xí)路徑。在開(kāi)始學(xué)習(xí)之前,讓我們了解一下為簡(jiǎn)化你的學(xué)習(xí)過(guò)程而構(gòu)建的框架。我們的計(jì)算機(jī)視覺(jué)學(xué)習(xí)路徑框架每個(gè)月都要有其對(duì)應(yīng)的學(xué)習(xí)結(jié)構(gòu),這是我們對(duì)每個(gè)月需要了解的不同方面進(jìn)行分類的方式:目標(biāo):這個(gè)月你會(huì)學(xué)到什么?關(guān)鍵要點(diǎn)是什么?你的計(jì)算機(jī)視覺(jué)之旅將如何進(jìn)行?我們會(huì)在每個(gè)月初提及此問(wèn)題,以確保你知道該月底的立場(chǎng)以及所處的位置建議時(shí)間:你每周平均應(yīng)在該部分上花費(fèi)多少時(shí)間學(xué)習(xí)資源:該月你將學(xué)習(xí)的計(jì)算機(jī)視覺(jué)主題的頂級(jí)資源集合,其中包括文章,教程,視頻,研究論文和其他類似資源你可以在此處下載該學(xué)習(xí)路徑的相應(yīng)信息圖。https://discuss.a(chǎn)nalyticsvidhya.com/t/heres-your-learning-path-to-master-computer-vision-in-2020/87785在數(shù)據(jù)科學(xué)領(lǐng)域?qū)ふ移渌麑W(xué)習(xí)途徑?別擔(dān)心,我們?yōu)槟闾峁┝耍?020年成為數(shù)據(jù)科學(xué)家和掌握機(jī)器學(xué)習(xí)的學(xué)習(xí)之路https://www.a(chǎn)nalyticsvidhya.com/blog/2020/01/learning-path-data-scientist-machine-learning-20202020年掌握深度學(xué)習(xí)的學(xué)習(xí)道路https://www.a(chǎn)nalyticsvidhya.com/blog/2020/01/comprehensive-learning-path-deep-learning-2020自然語(yǔ)言處理(NLP)學(xué)習(xí)路徑https://www.a(chǎn)nalyticsvidhya.com/blog/2020/01/learning-path-nlp-2020第1個(gè)月 – 涵蓋基礎(chǔ)知識(shí):Python與統(tǒng)計(jì)目標(biāo):到第一個(gè)月末,你將對(duì)什么是計(jì)算機(jī)視覺(jué)有基本的了解。你還將對(duì)Python和Statistics(計(jì)算機(jī)視覺(jué)之旅中的兩個(gè)核心主題)有一定的知識(shí)儲(chǔ)備。

建議時(shí)間:每周5-6小時(shí)

計(jì)算機(jī)視覺(jué)的介紹和動(dòng)機(jī):SAS計(jì)算機(jī)視覺(jué)教程:它是什么,它為什么重要:https://www.sas.com/en_in/insights/analytics/computer-vision.html

OpenCV中文官方教程v4.1(可選):http://woshicver.com

先決條件:

Python:Analytics Vidhya撰寫(xiě)的Python課程https://courses.a(chǎn)nalyticsvidhya.com/courses/introduction-to-data-science統(tǒng)計(jì):可汗學(xué)院的描述性統(tǒng)計(jì)https://www.khanacademy.org/math/engageny-alg-1/alg1-2第2個(gè)月 – 使用機(jī)器學(xué)習(xí)解決圖像分類問(wèn)題目標(biāo):你將對(duì)機(jī)器學(xué)習(xí)有基本的了解。你應(yīng)該熟悉不同的圖像預(yù)處理技術(shù),并能夠使用機(jī)器學(xué)習(xí)模型解決圖像分類問(wèn)題。

建議時(shí)間:每周5-6小時(shí)

機(jī)器學(xué)習(xí)基礎(chǔ):機(jī)器學(xué)習(xí)基礎(chǔ)https://www.a(chǎn)nalyticsvidhya.com/blog/2015/06/machine-learning-basics/sklearn中文官方教程0.22.1(可選):http://sklearn123.com線性回歸https://www.a(chǎn)nalyticsvidhya.com/blog/2017/06/a-comprehensive-guide-for-linear-ridge-and-lasso-regression/邏輯回歸https://www.a(chǎn)nalyticsvidhya.com/blog/2015/10/basics-logistic-regression/斯坦福大學(xué)-機(jī)器學(xué)習(xí)的動(dòng)機(jī)與應(yīng)用https://see.stanford.edu/Course/CS229/47斯坦福大學(xué)的“過(guò)擬合”和“過(guò)擬合”的概念https://see.stanford.edu/Course/CS229/42圖像預(yù)處理:從圖像中提取特征的3種技術(shù)https://www.a(chǎn)nalyticsvidhya.com/blog/2019/08/3-techniques-extract-features-from-image-data-machine-learning-python/HOG特征https://www.a(chǎn)nalyticsvidhya.com/blog/2019/09/feature-engineering-images-introduction-h(huán)og-feature-descriptor/SIFT特征https://www.a(chǎn)nalyticsvidhya.com/blog/2019/10/detailed-guide-powerful-sift-technique-image-matching-python/使用機(jī)器學(xué)習(xí)進(jìn)行圖像分類:使用邏輯回歸進(jìn)行圖像分類https://www.kaggle.com/gulsahdemiryurek/image-classification-with-logistic-regression使用Logistic回歸進(jìn)行圖像分類https://mmlind.github.io/Using_Logistic_Regression_to_solve_M(jìn)NIST/項(xiàng)目:識(shí)別服裝https://datahack.a(chǎn)nalyticsvidhya.com/contest/practice-problem-identify-the-apparels/第三個(gè)月 –  Keras和神經(jīng)網(wǎng)絡(luò)簡(jiǎn)介目標(biāo):你將學(xué)習(xí)最常用的深度學(xué)習(xí)工具之一-Keras,你還將了解什么是神經(jīng)網(wǎng)絡(luò)以及它們?nèi)绾喂ぷ,到三月底,你將能夠使用神?jīng)網(wǎng)絡(luò)解決圖像分類問(wèn)題。

1  2  3  4  下一頁(yè)>  
聲明: 本文由入駐維科號(hào)的作者撰寫(xiě),觀點(diǎn)僅代表作者本人,不代表OFweek立場(chǎng)。如有侵權(quán)或其他問(wèn)題,請(qǐng)聯(lián)系舉報(bào)。

發(fā)表評(píng)論

0條評(píng)論,0人參與

請(qǐng)輸入評(píng)論內(nèi)容...

請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字

您提交的評(píng)論過(guò)于頻繁,請(qǐng)輸入驗(yàn)證碼繼續(xù)

  • 看不清,點(diǎn)擊換一張  刷新

暫無(wú)評(píng)論

暫無(wú)評(píng)論

人工智能 獵頭職位 更多
掃碼關(guān)注公眾號(hào)
OFweek人工智能網(wǎng)
獲取更多精彩內(nèi)容
文章糾錯(cuò)
x
*文字標(biāo)題:
*糾錯(cuò)內(nèi)容:
聯(lián)系郵箱:
*驗(yàn) 證 碼:

粵公網(wǎng)安備 44030502002758號(hào)