訂閱
糾錯(cuò)
加入自媒體

人工智能之卷積神經(jīng)網(wǎng)絡(luò)(CNN)

CNN訓(xùn)練過程:

1)向前傳播階段:

a)從樣本集中取一個(gè)樣本(X,Yp),將X輸入網(wǎng)絡(luò);

b)計(jì)算相應(yīng)的實(shí)際輸出Op。

在本階段,信息從輸入層經(jīng)過逐級(jí)的變換,傳送到輸出層。這個(gè)過程也是網(wǎng)絡(luò)在完成訓(xùn)練后正常運(yùn)行時(shí)執(zhí)行的過程。在此過程中,網(wǎng)絡(luò)執(zhí)行的是計(jì)算,實(shí)際上就是輸入與每層的權(quán)值矩陣相點(diǎn)乘,得到最后的輸出結(jié)果:

Op=Fn(…(F2(F1(XpW(1))W(2))…)W(n))

2)向后傳播階段:

a)計(jì)算實(shí)際輸出Op與相應(yīng)的理想輸出Yp的差;

b)按極小化誤差的方法反向傳播調(diào)整權(quán)矩陣。

CNN優(yōu)點(diǎn):

1)  輸入圖像和網(wǎng)絡(luò)的拓?fù)浣Y(jié)構(gòu)能很好的吻合;

2)  盡管使用較少參數(shù),仍然有出色性能;

3)  避免了顯式的特征抽取,而隱式地從訓(xùn)練數(shù)據(jù)中進(jìn)行學(xué)習(xí);

4)  特征提取和模式分類同時(shí)進(jìn)行,并同時(shí)在訓(xùn)練中產(chǎn)生,網(wǎng)絡(luò)可以并行學(xué)習(xí);

5)  權(quán)值共享減少網(wǎng)絡(luò)的訓(xùn)練參數(shù),降低了網(wǎng)絡(luò)結(jié)構(gòu)的復(fù)雜性,適用性更強(qiáng);

6)  無需手動(dòng)選取特征,訓(xùn)練好權(quán)重,即得特征,分類效果好;

7)  可以直接輸入網(wǎng)絡(luò),避免了特征提取和分類過程中數(shù)據(jù)重建的復(fù)雜度。

blob.png

CNN缺點(diǎn):

1)  需要調(diào)整參數(shù);

2)  需要大樣本量,訓(xùn)練最好要GPU;

3)  物理含義不明確,神經(jīng)網(wǎng)絡(luò)本身就是一種難以解釋的 “黑箱模型”。

CNN常用框架:

1) Caffe:源于Berkeley的主流CV工具包,支持C++,python,matlab; Model Zoo中有大量預(yù)訓(xùn)練好的模型供使用;

2) Torch: Facebook用的卷積神經(jīng)網(wǎng)絡(luò)工具包,通過時(shí)域卷積的本地接口,使用非常直觀; 定義新網(wǎng)絡(luò)層簡(jiǎn)單;

3) TensorFlowGoogle的深度學(xué)習(xí)框架;TensorBoard可視化很方便;數(shù)據(jù)和模型并行化好,速度快

CNN應(yīng)用場(chǎng)景:

應(yīng)用場(chǎng)景包括機(jī)器學(xué)習(xí)、語音識(shí)別、文檔分析、語言檢測(cè)和圖像識(shí)別等領(lǐng)域。

特別強(qiáng)調(diào)的是:CNN在圖像處理和圖像識(shí)別領(lǐng)域取得了很大的成功,在國(guó)際標(biāo)準(zhǔn)的ImageNet數(shù)據(jù)集上,許多成功的模型都是基于CNN的。CNN相較于傳統(tǒng)的圖像處理算法的好處之一在于:避免了對(duì)圖像復(fù)雜的前期預(yù)處理過程,可以直接輸入原始圖像。

blob.png

結(jié)語:

卷積神經(jīng)網(wǎng)絡(luò)CNN是近年發(fā)展起來,并引起廣泛重視的一種高效識(shí)別方法。卷積神經(jīng)網(wǎng)絡(luò)以其局部權(quán)值共享的特殊結(jié)構(gòu)在模式識(shí)別方面有著獨(dú)特的優(yōu)越性,其布局更接近于實(shí)際的生物神經(jīng)網(wǎng)絡(luò),權(quán)值共享降低了網(wǎng)絡(luò)的復(fù)雜性,特別是多維輸入向量的圖像可以直接輸入網(wǎng)絡(luò)這一特點(diǎn)避免了特征提取和分類過程中數(shù)據(jù)重建的復(fù)雜度。CNN算法在人工智能機(jī)器學(xué)習(xí)、語音識(shí)別、文檔分析、語言檢測(cè)和圖像識(shí)別等領(lǐng)域等領(lǐng)域有著廣泛應(yīng)用。

<上一頁  1  2  
聲明: 本文由入駐維科號(hào)的作者撰寫,觀點(diǎn)僅代表作者本人,不代表OFweek立場(chǎng)。如有侵權(quán)或其他問題,請(qǐng)聯(lián)系舉報(bào)。

發(fā)表評(píng)論

0條評(píng)論,0人參與

請(qǐng)輸入評(píng)論內(nèi)容...

請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字

您提交的評(píng)論過于頻繁,請(qǐng)輸入驗(yàn)證碼繼續(xù)

  • 看不清,點(diǎn)擊換一張  刷新

暫無評(píng)論

暫無評(píng)論

人工智能 獵頭職位 更多
掃碼關(guān)注公眾號(hào)
OFweek人工智能網(wǎng)
獲取更多精彩內(nèi)容
文章糾錯(cuò)
x
*文字標(biāo)題:
*糾錯(cuò)內(nèi)容:
聯(lián)系郵箱:
*驗(yàn) 證 碼:

粵公網(wǎng)安備 44030502002758號(hào)