如何使用Python和OpenCV實(shí)現(xiàn)對(duì)象檢測(cè)任務(wù)的數(shù)據(jù)擴(kuò)充過(guò)程?
def colorjitter(img, cj_type="b"):
'''
### Different Color Jitter ###
img: image
cj_type: {b: brightness, s: saturation, c: constast}
'''
if cj_type == "b":
# value = random.randint(-50, 50)
value = np.random.choice(np.a(chǎn)rray([-50, -40, -30, 30, 40, 50]))
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
h, s, v = cv2.split(hsv)
if value >= 0:
lim = 255 - value
v[v > lim] = 255
v[v <= lim] += value
else:
lim = np.a(chǎn)bsolute(value)
v[v < lim] = 0
v[v >= lim] -= np.a(chǎn)bsolute(value)
final_h(yuǎn)sv = cv2.merge((h, s, v))
img = cv2.cvtColor(final_h(yuǎn)sv, cv2.COLOR_HSV2BGR)
return img
elif cj_type == "s":
# value = random.randint(-50, 50)
value = np.random.choice(np.a(chǎn)rray([-50, -40, -30, 30, 40, 50]))
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
h, s, v = cv2.split(hsv)
if value >= 0:
lim = 255 - value
s[s > lim] = 255
s[s <= lim] += value
else:
lim = np.a(chǎn)bsolute(value)
s[s < lim] = 0
s[s >= lim] -= np.a(chǎn)bsolute(value)
final_h(yuǎn)sv = cv2.merge((h, s, v))
img = cv2.cvtColor(final_h(yuǎn)sv, cv2.COLOR_HSV2BGR)
return img
elif cj_type == "c":
brightness = 10
contrast = random.randint(40, 100)
dummy = np.int16(img)
dummy = dummy * (contrast/127+1) - contrast + brightness
dummy = np.clip(dummy, 0, 255)
img = np.uint8(dummy)
return img
添加噪聲通常,噪聲被認(rèn)為是圖像中不可預(yù)料的因素,然而,有幾種類型的噪聲(如高斯噪聲、椒鹽噪聲)可以用于數(shù)據(jù)擴(kuò)充,在深度學(xué)習(xí)中,添加噪聲是一種非常簡(jiǎn)單而有益的數(shù)據(jù)擴(kuò)充方法。在下面的例子中,為了增強(qiáng)數(shù)據(jù),將高斯噪聲和椒鹽噪聲添加到原始圖像中。
對(duì)于那些無(wú)法識(shí)別高斯噪聲和椒鹽噪聲區(qū)別的人,高斯噪聲的取值范圍取決于配置,從0到255,因此,在RGB圖像中,高斯噪聲像素可以是任何顏色。相反,椒鹽噪聲像素只能有兩個(gè)值:0或255,分別為黑色(椒)或白色(鹽)。def noisy(img, noise_type="gauss"):
'''
### Adding Noise ###
img: image
cj_type: {gauss: gaussian, sp: salt & pepper}
'''
if noise_type == "gauss":
image=img.copy()
mean=0
st=0.7
gauss = np.random.normal(mean,st,image.shape)
gauss = gauss.a(chǎn)stype('uint8')
image = cv2.a(chǎn)dd(image,gauss)
return image
elif noise_type == "sp":
image=img.copy()
prob = 0.05
if len(image.shape) == 2:
black = 0
white = 255
else:
colorspace = image.shape[2]
if colorspace == 3: # RGB
black = np.a(chǎn)rray([0, 0, 0], dtype='uint8')
white = np.a(chǎn)rray([255, 255, 255], dtype='uint8')
else: # RGBA
black = np.a(chǎn)rray([0, 0, 0, 255], dtype='uint8')
white = np.a(chǎn)rray([255, 255, 255, 255], dtype='uint8')
probs = np.random.random(image.shape[:2])
image[probs < (prob / 2)] = black
image[probs > 1 - (prob / 2)] = white
return image
過(guò)濾本文介紹的最后一個(gè)數(shù)據(jù)擴(kuò)充過(guò)程是過(guò)濾。與添加噪聲類似,過(guò)濾也很簡(jiǎn)單,易于實(shí)現(xiàn)。在實(shí)現(xiàn)中使用的三種濾波類型包括模糊(均值)、高斯和中值。
def filters(img, f_type = "blur"):
'''
### Filtering ###
img: image
f_type: {blur: blur, gaussian: gaussian, median: median}
'''
if f_type == "blur":
image=img.copy()
fsize = 9
return cv2.blur(image,(fsize,fsize))
elif f_type == "gaussian":
image=img.copy()
fsize = 9
return cv2.GaussianBlur(image, (fsize, fsize), 0)
elif f_type == "median":
image=img.copy()
fsize = 9
return cv2.medianBlur(image, fsize)
總結(jié)
在這篇文章中,主要向大家介紹了一個(gè)關(guān)于對(duì)象檢測(cè)任務(wù)中數(shù)據(jù)擴(kuò)充實(shí)現(xiàn)的教程。你們可以在這里找到完整實(shí)現(xiàn)。https://github.com/tranleanh/data-augmentation
發(fā)表評(píng)論
請(qǐng)輸入評(píng)論內(nèi)容...
請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字
最新活動(dòng)更多
-
11月20日火熱報(bào)名中>> 2024 智能家居出海論壇
-
11月28日立即報(bào)名>>> 2024工程師系列—工業(yè)電子技術(shù)在線會(huì)議
-
12月19日立即報(bào)名>> 【線下會(huì)議】OFweek 2024(第九屆)物聯(lián)網(wǎng)產(chǎn)業(yè)大會(huì)
-
即日-12.26火熱報(bào)名中>> OFweek2024中國(guó)智造CIO在線峰會(huì)
-
即日-2025.8.1立即下載>> 《2024智能制造產(chǎn)業(yè)高端化、智能化、綠色化發(fā)展藍(lán)皮書》
-
精彩回顧立即查看>> 【在線會(huì)議】多物理場(chǎng)仿真助跑新能源汽車
推薦專題
- 1 腦機(jī)接口芯片,華為出了新專利!
- 2 今年諾獎(jiǎng)對(duì)人工智能的重視,給我們的基礎(chǔ)教育提了個(gè)醒
- 3 銀行業(yè)AI大模型,從入局到求變
- 4 巨頭搶布局,VC狂撒錢,為了能讓「AI讀心」這些公司卷瘋了
- 5 阿斯麥ASML:“骨折級(jí)”洋相,又成AI第一殺手?
- 6 蘋果市值創(chuàng)新高,iPhone 16能否助力突破4萬(wàn)億美元大關(guān)?
- 7 一場(chǎng)“載入史冊(cè)”的發(fā)布會(huì),讓馬斯克失去了4700億
- 8 百度谷歌比較研究2024:中美“遠(yuǎn)古AI龍頭”的現(xiàn)狀與趨勢(shì)
- 9 洞見(jiàn)AI風(fēng)潮 第二屆vivo藍(lán)河操作系統(tǒng)創(chuàng)新賽開(kāi)啟招募
- 10 地平線開(kāi)啟配售,阿里百度各砸5000萬(wàn)美金,市值最高超500億
- 高級(jí)軟件工程師 廣東省/深圳市
- 自動(dòng)化高級(jí)工程師 廣東省/深圳市
- 光器件研發(fā)工程師 福建省/福州市
- 銷售總監(jiān)(光器件) 北京市/海淀區(qū)
- 激光器高級(jí)銷售經(jīng)理 上海市/虹口區(qū)
- 光器件物理工程師 北京市/海淀區(qū)
- 激光研發(fā)工程師 北京市/昌平區(qū)
- 技術(shù)專家 廣東省/江門市
- 封裝工程師 北京市/海淀區(qū)
- 結(jié)構(gòu)工程師 廣東省/深圳市