侵權(quán)投訴
訂閱
糾錯(cuò)
加入自媒體

AI+醫(yī)藥的6大場景落地,諾華、GSK、賽諾菲在如何搶占數(shù)字化新風(fēng)口?

近年來,隨著技術(shù)的不斷革新,幫助制藥業(yè)改變現(xiàn)狀、降低成本、實(shí)現(xiàn)更大的價(jià)值。從個(gè)性化治療到預(yù)防,技術(shù)發(fā)展給制藥公司的傳統(tǒng)商業(yè)模式帶來了挑戰(zhàn)。

在眾多新興技術(shù)中,人工智能和高級分析受到了制藥業(yè)越來越多的關(guān)注。這些技術(shù)的價(jià)值在于,它們能夠快速處理大量復(fù)雜的結(jié)構(gòu)化和非結(jié)構(gòu)化數(shù)據(jù),為相關(guān)人員的實(shí)際操作提供建議,從而降低成本、縮短藥物上市時(shí)間并在市場上獲得競爭優(yōu)勢。

FICCI是印度工商聯(lián)合會(huì)( Federation of Indian Chambers of Commerce & Industry) 的縮寫,成立于1927年,是印度歷史最悠久的全國性商會(huì)組織。該聯(lián)合會(huì)有500多家地區(qū)與行業(yè)商會(huì)成員,遍布印度工商各業(yè),代表印度25萬家公司,這些公司總雇員約有2000萬人。

FICCI還與各國工商界有著廣泛的聯(lián)系,與74個(gè)國家和地區(qū)建立了聯(lián)合商務(wù)委員會(huì)(Joint Business Council, JBC)。通過此報(bào)告,讀者可以看到FICCI眼中的AI+醫(yī)藥圖景。

人工智能和高級分析成醫(yī)藥數(shù)字化新風(fēng)口

目前,全球制藥業(yè)正經(jīng)歷兩大轉(zhuǎn)變:首先是整個(gè)醫(yī)療價(jià)值鏈的轉(zhuǎn)變,政府和保險(xiǎn)公司作為中心力量,向制藥公司施加壓力,要求它們降低價(jià)格,提升藥物價(jià)值。其次,醫(yī)療模式正逐漸從治療轉(zhuǎn)向預(yù)防、診斷和治愈的模式,并吸引了行業(yè)內(nèi)外大量競爭者加入。

這一轉(zhuǎn)變是由三種發(fā)展趨勢所推動(dòng)的:突破性的創(chuàng)新療法、技術(shù)的進(jìn)步以及通過獲取和分析患者數(shù)據(jù)而實(shí)現(xiàn)的醫(yī)療消費(fèi)。

雖然目前大部分技術(shù)還是應(yīng)用于藥物發(fā)現(xiàn)領(lǐng)域,但在藥物劑量和用藥安全、制造和供應(yīng)鏈以及商業(yè)化等其他領(lǐng)域,人工智能的實(shí)際應(yīng)用也在進(jìn)一步探索中。就人工智能和高級分析技術(shù)而言,制藥公司需要選擇他們的業(yè)務(wù)領(lǐng)域以及合作伙伴。我們可以看到,藥企越來越強(qiáng)調(diào)合作關(guān)系,其中最多的便是與科技初創(chuàng)企業(yè)的合作。

放眼未來,“科技+醫(yī)藥”這一市場有著巨大的發(fā)展?jié)摿ΑT蛟谟,領(lǐng)跑者獲得了高回報(bào),雖然給其他競爭者帶來了不小的壓力,但也鼓勵(lì)更多人加入到市場競爭中。另一方面,受到初創(chuàng)企業(yè)的推動(dòng),這些技術(shù)的應(yīng)用范圍十分廣泛。與此同時(shí),監(jiān)管機(jī)構(gòu)需要改變其審批醫(yī)療設(shè)備的傳統(tǒng)方式,并配備相關(guān)的技術(shù)知識(shí)和專業(yè)人員,以便更快地評估和批準(zhǔn)這些新興技術(shù)。

科技的進(jìn)步以不同的方式為許多復(fù)雜的事情帶來可能性。包括移動(dòng)通信、云計(jì)算、高級分析和物聯(lián)網(wǎng)(IoT)在內(nèi)的數(shù)字技術(shù),正在顛覆工業(yè)制造、零售、電信、銀行業(yè)和醫(yī)藥制造等傳統(tǒng)行業(yè)。各種驅(qū)動(dòng)力正在加速醫(yī)藥領(lǐng)域的數(shù)字化轉(zhuǎn)型:

提高效率,降低醫(yī)藥研發(fā)成本;

優(yōu)化產(chǎn)品質(zhì)量,讓生產(chǎn)過程更符合規(guī)范;

增加與患者的互動(dòng),提高回購率;

提高疾病診斷和治療的水平;

確定患者的需求,降低供需之間的差距;

拓寬產(chǎn)品種類和服務(wù)范圍。

在新興技術(shù)領(lǐng)域,人工智能和高級分析正在挑戰(zhàn)制藥公司的傳統(tǒng)商業(yè)模式。因此,一些科技公司可能和傳統(tǒng)醫(yī)藥公司不同,它們會(huì)提出新的商業(yè)模式,并盡可能讓醫(yī)藥公司接受。制藥行業(yè)產(chǎn)生的數(shù)據(jù)量呈指數(shù)級增長,因此,藥企的首要任務(wù)在于,利用這些數(shù)據(jù)來驅(qū)動(dòng)價(jià)值。其最終目標(biāo)是簡化醫(yī)藥價(jià)值鏈,提高藥品生產(chǎn)效率和審批率,并降低成本。

為了更好地發(fā)展新興技術(shù),頂級制藥公司已經(jīng)對一領(lǐng)域進(jìn)行大量投資,并與人工智能公司結(jié)成戰(zhàn)略聯(lián)盟,將人工智能技術(shù)整合到它們的價(jià)值鏈中。

圖1:全球頭部制藥企業(yè)在AI+醫(yī)藥方面的布局

資料來源:FICCI

這些公司大多選擇與人工智能公司結(jié)成戰(zhàn)略聯(lián)盟,利用人工智能進(jìn)行藥物研發(fā)。由于這些合作關(guān)系處于制藥公司的核心部分,一些制藥公司也認(rèn)為它們需要在內(nèi)部開發(fā)相關(guān)技術(shù),比如在藥物劑量及用藥安全方面。

制藥行業(yè)的人工智能正逐漸從最初的研發(fā)階段向后消費(fèi)階段轉(zhuǎn)變。

該行業(yè)的一些發(fā)展趨勢包括:

藥物研發(fā):大型制藥公司選擇發(fā)展自己的AI技術(shù),或者與AI初創(chuàng)企業(yè)合作,來加快藥物研發(fā)過程,實(shí)現(xiàn)個(gè)體化用藥;

藥物劑量和用藥安全:人工智能可以根據(jù)患者的病情和特點(diǎn),為每位患者定制相應(yīng)的藥物劑量。人工智能被應(yīng)用于安全價(jià)值鏈的各個(gè)階段,以提高整體質(zhì)量和藥物依從性;

藥物生產(chǎn)和供應(yīng)鏈:人工智能正被用于優(yōu)化整個(gè)生產(chǎn)過程中的藥物驗(yàn)證以及假藥識(shí)別;

商業(yè)化:人工智能越來越多地被用于患者分類,提高藥物療效,減少不良反應(yīng);

監(jiān)管機(jī)構(gòu)的審批:簡化臨床藥品的審批流程,使之更加快速、透明。

而在印度,制藥公司最近才開始將人工智能應(yīng)用于藥物研發(fā)和產(chǎn)品供應(yīng)鏈。藥物發(fā)現(xiàn)仍然是醫(yī)藥行業(yè)數(shù)字化轉(zhuǎn)型的重點(diǎn)領(lǐng)域,因?yàn)槿斯ぶ悄芸梢酝ㄟ^掃描數(shù)據(jù)庫,尋找到藥物的特定分子。

六大AI應(yīng)用場景落地迎來“爆發(fā)期”

1.AI+藥物研發(fā)

藥物發(fā)現(xiàn)過程通常涉及到大量化合物的鑒定,人工智能可以簡化這一過程,通過使用算法來檢查分子的化學(xué)特征,以確定它是否可以用來制造藥物。葛蘭素史克GSK、賽諾菲Sanofi、武田制藥Takeda Pharma和默克Merck等制藥公司已與人工智能初創(chuàng)企業(yè)建立了多種合作關(guān)系:

GSK與英國的人工智能初創(chuàng)企業(yè)Exscientia合作,出資4300萬美元用于藥物研發(fā),在未公開的治療區(qū)域?yàn)?0個(gè)選定的靶向藥物識(shí)別小分子。Sanofi與 Exscientia簽署了一份價(jià)值2.83億美元的戰(zhàn)略合作協(xié)議,為糖尿病和其他代謝疾病研發(fā)新療法。

藥物的再利用是另一個(gè)常見用例——老藥新用。不同的算法可以為現(xiàn)有藥物或處于后期開發(fā)中的候選藥物確定新的潛在應(yīng)用。

將處于后期開發(fā)中的藥物用于新的治療領(lǐng)域是許多生物制藥公司的首選策略,如Sanofi 和人工智能初創(chuàng)企業(yè)Recursion Pharmaceuticals合作,共同進(jìn)行藥物研發(fā),旨在將Sanofi的臨床階段小分子用于各種遺傳疾病的治療。Astellas Pharma與大數(shù)據(jù)生物信息公司NuMedii合作,利用機(jī)器學(xué)習(xí)技術(shù)進(jìn)行藥物的再利用。

開發(fā)生物標(biāo)志物是藥物研發(fā)的重要階段,人工智能在這一領(lǐng)域的應(yīng)用越來越多。流感疫苗全球領(lǐng)導(dǎo)者賽諾菲巴斯德(Sanofi Pasteur)利用Berg Health的平臺(tái)和人工智能工具,來識(shí)別分子特征、開發(fā)潛在的生物標(biāo)志物,以便評估流感疫苗的免疫反應(yīng)。

此外,藥企越來越關(guān)注數(shù)字生物標(biāo)志物,這有利于獲取具有臨床意義的客觀數(shù)據(jù),提高成本效益。

2.AI+用藥安全

藥物劑量:新加坡國立大學(xué)創(chuàng)建了一個(gè)名為“CURATE.AI”的人工智能平臺(tái)。它可以利用患者的臨床數(shù)據(jù),比如歷史記錄,來快速識(shí)別藥物劑量,并在此基礎(chǔ)上對腫瘤大小或腫瘤生物標(biāo)志物水平進(jìn)行修正。這些數(shù)據(jù)還可用于根據(jù)患者的需要定制不同療程。

臨床安全:Agios Pharmaceuticals利用自然語言處理(NLP),幫助其系統(tǒng)做出快速全面的決策。該技術(shù)還可以通過探索性研究,識(shí)別安全信號(hào),用于臨床前的藥物研發(fā)。此外,自然語言處理還可用于研究患者的癥狀模式,以幫助識(shí)別患者是否處于高危情況。

非臨床安全:Merck公司利用NLP技術(shù)來自動(dòng)化工作流程,將非結(jié)構(gòu)化數(shù)據(jù)和結(jié)構(gòu)化數(shù)據(jù)結(jié)合,進(jìn)行分析,為安全評估團(tuán)隊(duì)創(chuàng)建可視化的商業(yè)智能儀表盤。這一過程使公司能夠識(shí)別只有在長期測試中才能識(shí)別的異常情況。

藥物警戒:GSK的臨床安全團(tuán)隊(duì)通過研究醫(yī)學(xué)文獻(xiàn),不斷確定相關(guān)的安全信號(hào)。GSK擁有近200種產(chǎn)品組合,它可以利用NLP來提高研究效率和語言處理速度,使搜索過程更加規(guī)范,并更快確定藥物和不良事件之間的關(guān)系。

3.AI+藥物生產(chǎn)和供應(yīng)鏈

Veripad利用機(jī)器學(xué)習(xí)技術(shù)來識(shí)別供應(yīng)鏈中的假藥。該組織設(shè)計(jì)了一種化學(xué)測試卡,用于快速檢測常見藥物的成分。將這種測試卡和對應(yīng)的移動(dòng)應(yīng)用程序一起使用,就可以鑒別假藥。最后,Veripad利用數(shù)據(jù)分析技術(shù)來匯總每次測試的結(jié)果,以便更好地了解假藥劣藥的流通情況。

針對藥物分類,Veripad的第一代應(yīng)用程序已經(jīng)可以達(dá)到80%的精確度。紐約大學(xué)的研究團(tuán)隊(duì)也利用機(jī)器學(xué)習(xí)技術(shù),開發(fā)了一種新的機(jī)制,用于識(shí)別同款產(chǎn)品的真假情況。

4.AI+市場開拓和商業(yè)化

一家全球制藥企業(yè)與人工智能和分析公司Aktana合作,旨在簡化他們的多渠道營銷(MCM)流程。該企業(yè)認(rèn)為,醫(yī)生更有可能打開并回復(fù)醫(yī)藥公司代表發(fā)來的電子郵件,而不是一封自動(dòng)發(fā)出的郵件;谶@一信息,公司決定在Aktana的幫助下簡化其患者追蹤渠道。

由于這些過程非常復(fù)雜且耗時(shí),Aktana幫助制藥公司來預(yù)合成數(shù)據(jù)、發(fā)送定時(shí)電子郵件以及跟蹤客戶關(guān)系管理(CRM)中的交互。在采納了Aktana的建議后,該公司收到的客戶郵件數(shù)量增加了23倍,電子郵件參與度提高了兩倍。

5.AI+患者個(gè)性化診療

腫瘤學(xué)一直是制藥業(yè)的主要研究領(lǐng)域之一,該學(xué)科的重點(diǎn)是尋找腫瘤和癌癥的最佳治療方法。為了達(dá)到這一目的,臨床醫(yī)生首先要根據(jù)特定患者的病因,確定合適的治療方法。

IBM Watson利用其在數(shù)據(jù)分析和機(jī)器學(xué)習(xí)方面的先進(jìn)技術(shù),可以對電子健康記錄(EHR)和相關(guān)信息中的數(shù)據(jù)進(jìn)行分析,以便進(jìn)一步研究適合單個(gè)患者的最佳治療方案。

此外,人工智能還被用于幫助患者匹配臨床試驗(yàn),這有助于改善癌癥臨床試驗(yàn)的結(jié)果。諾華(Novartis)與IBM Watson展開合作,在晚期乳腺癌領(lǐng)域應(yīng)用此類解決方案,并計(jì)劃進(jìn)一步擴(kuò)大到更廣泛的腫瘤學(xué)領(lǐng)域。兩家公司旨在通過分析實(shí)時(shí)患者數(shù)據(jù),改善患者的治療效果。

匈牙利的創(chuàng)業(yè)公司Turbine與德國制藥巨頭拜耳公司(Bayer)合作,將人工智能技術(shù)與癌癥治療相結(jié)合。Turbine想要通過基因測序創(chuàng)建一個(gè)模擬癌細(xì)胞,相關(guān)軟件可以幫助進(jìn)行數(shù)以百萬計(jì)的模擬,以開發(fā)最佳的治療組合。

通過顯著縮短試驗(yàn)周期,這一概念可以幫助制藥公司獲得高投資回報(bào)。此外,在沒有明確治療計(jì)劃的情況下,Turbine的AI平臺(tái)可以測試數(shù)百萬種治療組合,以找到最合適的治療方法。

6.AI+通過遠(yuǎn)程醫(yī)療移動(dòng)醫(yī)療實(shí)現(xiàn)患者連接

倫敦的AI健康應(yīng)用程序制造商Ada health推出了一款遠(yuǎn)程醫(yī)療應(yīng)用程序。該程序可以利用人工智能和自然語言處理(NLP),根據(jù)患者的癥狀,生成相關(guān)的問題和建議。

它的設(shè)計(jì)靈感來源于,該公司意識(shí)到制藥和健康行業(yè)正在采用以患者為中心的模式。這款應(yīng)用可以讓醫(yī)生和人工智能助手一起工作,來照顧患者。

此外,該公司還與藥店Karepack合作,可以將醫(yī)生開的處方藥送到患者家中。

AI+醫(yī)藥,前路尚遠(yuǎn)

對于制藥公司來說,僅僅認(rèn)識(shí)到這兩個(gè)轉(zhuǎn)變是不夠的——降低價(jià)格并提高其療法的價(jià)值,以及從治療轉(zhuǎn)向預(yù)防、診斷和治愈的模式。藥企面臨的最大挑戰(zhàn)在于,如何以一種全面的方式,迅速果斷地適應(yīng)這些變化給商業(yè)和運(yùn)營模式帶來的影響。

與此同時(shí),制藥公司越來越多地應(yīng)用人工智能和高級分析等不同技術(shù),這不僅有利于提高效率、降低成本,而且能夠適應(yīng)以患者為中心的商業(yè)模式。自動(dòng)化、效率和協(xié)作等幾個(gè)關(guān)鍵因素將在重塑制藥業(yè)以患者為中心的格局中發(fā)揮重要作用。

綜合運(yùn)用這些技術(shù)將成為未來趨勢,并改變醫(yī)藥價(jià)值鏈的整體前景。無論是與人工智能初創(chuàng)企業(yè)合作,還是開發(fā)內(nèi)部技術(shù),制藥公司都正在進(jìn)行數(shù)字化轉(zhuǎn)型,并在人工智能技術(shù)上進(jìn)行投資。雖然目前只有少數(shù)醫(yī)藥價(jià)值鏈真正采用了這些技術(shù),但在未來幾年,人工智能和高級分析等技術(shù)將有望改變醫(yī)藥這一傳統(tǒng)行業(yè)。

聲明: 本文系OFweek根據(jù)授權(quán)轉(zhuǎn)載自其它媒體或授權(quán)刊載,目的在于信息傳遞,并不代表本站贊同其觀點(diǎn)和對其真實(shí)性負(fù)責(zé),如有新聞稿件和圖片作品的內(nèi)容、版權(quán)以及其它問題的,請聯(lián)系我們。

發(fā)表評論

0條評論,0人參與

請輸入評論內(nèi)容...

請輸入評論/評論長度6~500個(gè)字

您提交的評論過于頻繁,請輸入驗(yàn)證碼繼續(xù)

  • 看不清,點(diǎn)擊換一張  刷新

暫無評論

暫無評論

醫(yī)療科技 獵頭職位 更多
文章糾錯(cuò)
x
*文字標(biāo)題:
*糾錯(cuò)內(nèi)容:
聯(lián)系郵箱:
*驗(yàn) 證 碼:

粵公網(wǎng)安備 44030502002758號(hào)