如何使用深度學(xué)習(xí)生成模糊背景?
步驟2:用于可視化從輸入中獲取的分割圖像的功能。def run_visualization():
"""Inferences DeepLab model and visualizes result."""
try:
original_im = Image.open(IMAGE_NAME)
except IOError:
print('Cannot retrieve image. Please check url: ' + url)
returnprint('running deeplab on image')
resized_im, seg_map = MODEL.run(original_im)
vis_segmentation(resized_im, seg_map)
return resized_im, seg_map
2.1:使用前面顯示的圖像調(diào)用上述功能。IMAGE_NAME = 'download2.jpg'
resized_im, seg_map = run_visualization()
分割后輸出。
2.2:現(xiàn)在,我們讀取輸入圖像并將其轉(zhuǎn)換為numpy數(shù)組。print(type(resized_im))
numpy_image = np.a(chǎn)rray(resized_im)
步驟3:分離背景和前景。在此步驟中,我們創(chuàng)建圖像的副本,然后,通過將背景中的值替換為0,并在已創(chuàng)建蒙版的位置保留255,將背景和前景與分割后的圖像分開,此處7表示汽車類別。person_not_person_mapping = deepcopy(numpy_image)
person_not_person_mapping[seg_map 。 7] = 0
person_not_person_mapping[seg_map == 7] = 255
3.1:可視化分離的蒙版圖像plt.imshow(person_not_person_mapping)
正如上一步中所述,背景已被黑色替換,汽車蒙版已變?yōu)榘咨,同樣,通過替換這些值,我們也沒有丟失任何重要信息。
3.2:調(diào)整蒙版圖像的大小使其等于原始圖像。在分割過程之后,圖像的大小減小了,在我們的例子中,圖像的大小減小為(300 x 500),因此我們將圖像的大小調(diào)整為原始大小,即(900 x 596)。orig_imginal = Image.open(IMAGE_NAME)
orig_imginal = np.a(chǎn)rray(orig_imginal)mapping_resized = cv2.resize(person_not_person_mapping,
(orig_imginal.shape[1],
orig_imginal.shape[0]),
Image.ANTIALIAS)
mapping_resized.shape
3.3:二值化由于調(diào)整了大小,圖像生成的值在0,1,2…255之間,為了再次將值限制在0–255之間,我們必須使用Otsu的Binarization技術(shù)對(duì)圖像進(jìn)行二值化。簡(jiǎn)而言之,Otsu的Binarization是一種尋找灰度圖像閾值的自適應(yīng)方法,它遍歷0-255范圍內(nèi)的所有可能閾值,并找到給定圖像的最佳可能閾值。在內(nèi)部,它基于一些統(tǒng)計(jì)概念(例如方差),以根據(jù)所選閾值找出類別。一旦選擇了最佳閾值,則大于閾值的像素值將被視為白色像素,小于閾值的像素值將被視為黑色像素。
gray = cv2.cvtColor(mapping_resized, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray,(15,15),0)
ret3,thresholded_img = cv2.threshold(blurred,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
plt.imshow(thresholded_img)
發(fā)表評(píng)論
請(qǐng)輸入評(píng)論內(nèi)容...
請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字
最新活動(dòng)更多
-
11月20日火熱報(bào)名中>> 2024 智能家居出海論壇
-
11月28日立即報(bào)名>>> 2024工程師系列—工業(yè)電子技術(shù)在線會(huì)議
-
12月19日立即報(bào)名>> 【線下會(huì)議】OFweek 2024(第九屆)物聯(lián)網(wǎng)產(chǎn)業(yè)大會(huì)
-
即日-12.26火熱報(bào)名中>> OFweek2024中國智造CIO在線峰會(huì)
-
即日-2025.8.1立即下載>> 《2024智能制造產(chǎn)業(yè)高端化、智能化、綠色化發(fā)展藍(lán)皮書》
-
精彩回顧立即查看>> 【在線會(huì)議】多物理場(chǎng)仿真助跑新能源汽車
推薦專題
- 1 腦機(jī)接口芯片,華為出了新專利!
- 2 今年諾獎(jiǎng)對(duì)人工智能的重視,給我們的基礎(chǔ)教育提了個(gè)醒
- 3 銀行業(yè)AI大模型,從入局到求變
- 4 巨頭搶布局,VC狂撒錢,為了能讓「AI讀心」這些公司卷瘋了
- 5 阿斯麥ASML:“骨折級(jí)”洋相,又成AI第一殺手?
- 6 蘋果市值創(chuàng)新高,iPhone 16能否助力突破4萬億美元大關(guān)?
- 7 洞見AI風(fēng)潮 第二屆vivo藍(lán)河操作系統(tǒng)創(chuàng)新賽開啟招募
- 8 地平線開啟配售,阿里百度各砸5000萬美金,市值最高超500億
- 9 小馬智行沖刺納斯達(dá)克:或成「全球Robotaxi第一股」,兩年半營收約12億元
- 10 云從科技:營收低迷與虧損加劇,2025年盈利目標(biāo)挑戰(zhàn)重重
- 高級(jí)軟件工程師 廣東省/深圳市
- 自動(dòng)化高級(jí)工程師 廣東省/深圳市
- 光器件研發(fā)工程師 福建省/福州市
- 銷售總監(jiān)(光器件) 北京市/海淀區(qū)
- 激光器高級(jí)銷售經(jīng)理 上海市/虹口區(qū)
- 光器件物理工程師 北京市/海淀區(qū)
- 激光研發(fā)工程師 北京市/昌平區(qū)
- 技術(shù)專家 廣東省/江門市
- 封裝工程師 北京市/海淀區(qū)
- 結(jié)構(gòu)工程師 廣東省/深圳市