如何構(gòu)建一個(gè) CNN 模型,以從圖像中對(duì)幼苗的種類(lèi)進(jìn)行分類(lèi)?
new_train = np.a(chǎn)sarray(new_train)
# CLEANED IMAGES
for i in range(8):
plt.subplot(2,4,i+1)
plt.imshow(new_train[i])
將標(biāo)簽轉(zhuǎn)換為數(shù)字
標(biāo)簽是字符串,這些很難處理。因此,我們將這些標(biāo)簽轉(zhuǎn)換為二元分類(lèi)。
分類(lèi)可以由 12 個(gè)數(shù)字組成的數(shù)組表示,這些數(shù)字將遵循以下條件:
如果未檢測(cè)到物種,則為 0。
1 如果檢測(cè)到該物種。
示例:如果檢測(cè)到 Blackgrass,則數(shù)組將為 = [1,0,0,0,0,0,0,0,0,0,0,0]
labels = preprocessing.LabelEncoder()
labels.fit(traininglabels[0])
print('Classes'+str(labels.classes_))
encodedlabels = labels.transform(traininglabels[0])
clearalllabels = np_utils.to_categorical(encodedlabels)
classes = clearalllabels.shape[1]
print(str(classes))
traininglabels[0].value_counts().plot(kind='pie')
定義我們的模型并拆分?jǐn)?shù)據(jù)集
在這一步中,我們將拆分訓(xùn)練數(shù)據(jù)集進(jìn)行驗(yàn)證。我們正在使用 scikit-learn 中的 train_test_split() 函數(shù)。這里我們拆分?jǐn)?shù)據(jù)集,保持 test_size=0.1。這意味著總數(shù)據(jù)的 10% 用作測(cè)試數(shù)據(jù),其余 90% 用作訓(xùn)練數(shù)據(jù)。檢查以下代碼以拆分?jǐn)?shù)據(jù)集。new_train = new_train/255
x_train,x_test,y_train,y_test = train_test_split(new_train,clearalllabels,test_size=0.1,random_state=seed,stratify=clearalllabels)
防止過(guò)擬合
過(guò)擬合是機(jī)器學(xué)習(xí)中的一個(gè)問(wèn)題,我們的模型在訓(xùn)練數(shù)據(jù)上表現(xiàn)非常好,但在測(cè)試數(shù)據(jù)上表現(xiàn)不佳。在深度神經(jīng)網(wǎng)絡(luò)過(guò)度擬合的深度學(xué)習(xí)中,過(guò)度擬合的問(wèn)題很?chē)?yán)重。過(guò)度擬合的問(wèn)題嚴(yán)重影響了我們的最終結(jié)果。為了擺脫它,我們需要減少它。在這個(gè)問(wèn)題中,我們使用 ImageDataGenerator() 函數(shù)隨機(jī)改變圖像的特征并提供數(shù)據(jù)的隨機(jī)性。、為了避免過(guò)擬合,我們需要一個(gè)函數(shù)。此函數(shù)隨機(jī)改變圖像特性。檢查以下代碼以了解如何減少過(guò)度擬合generator = ImageDataGenerator(rotation_range = 180,zoom_range = 0.1,width_shift_range = 0.1,height_shift_range = 0.1,horizontal_flip = True,vertical_flip = True)
generator.fit(x_train)
定義卷積神經(jīng)網(wǎng)絡(luò)
我們的數(shù)據(jù)集由圖像組成,因此我們不能使用線(xiàn)性回歸、邏輯回歸、決策樹(shù)等機(jī)器學(xué)習(xí)算法。我們需要一個(gè)用于圖像的深度神經(jīng)網(wǎng)絡(luò)。在這個(gè)問(wèn)題中,我們將使用卷積神經(jīng)網(wǎng)絡(luò)。該神經(jīng)網(wǎng)絡(luò)將圖像作為輸入,并將提供最終輸出作為物種值。我們隨機(jī)使用了 4 個(gè)卷積層和 3 個(gè)全連接層。此外,我們使用了多個(gè)函數(shù),如 Sequential()、Conv2D()、Batch Normalization、Max Pooling、Dropout 和 Flatting。
我們使用卷積神經(jīng)網(wǎng)絡(luò)進(jìn)行訓(xùn)練。
該模型有 4 個(gè)卷積層。
該模型有 3 個(gè)全連接層。
np.random.seed(seed)
model = Sequential()
model.a(chǎn)dd(Conv2D(filters=64, kernel_size=(5, 5), input_shape=(scale, scale, 3), activation='relu'))
model.a(chǎn)dd(BatchNormalization(axis=3))
model.a(chǎn)dd(Conv2D(filters=64, kernel_size=(5, 5), activation='relu'))
model.a(chǎn)dd(MaxPooling2D((2, 2)))
model.a(chǎn)dd(BatchNormalization(axis=3))
model.a(chǎn)dd(Dropout(0.1))
model.a(chǎn)dd(Conv2D(filters=128, kernel_size=(5, 5), activation='relu'))
model.a(chǎn)dd(BatchNormalization(axis=3))
model.a(chǎn)dd(Conv2D(filters=128, kernel_size=(5, 5), activation='relu'))
model.a(chǎn)dd(MaxPooling2D((2, 2)))
model.a(chǎn)dd(BatchNormalization(axis=3))
model.a(chǎn)dd(Dropout(0.1))
model.a(chǎn)dd(Conv2D(filters=256, kernel_size=(5, 5), activation='relu'))
model.a(chǎn)dd(BatchNormalization(axis=3))
model.a(chǎn)dd(Conv2D(filters=256, kernel_size=(5, 5), activation='relu'))
model.a(chǎn)dd(MaxPooling2D((2, 2)))
model.a(chǎn)dd(BatchNormalization(axis=3))
model.a(chǎn)dd(Dropout(0.1))
model.a(chǎn)dd(Flatten())
model.a(chǎn)dd(Dense(256, activation='relu'))
model.a(chǎn)dd(BatchNormalization())
model.a(chǎn)dd(Dropout(0.5))
model.a(chǎn)dd(Dense(256, activation='relu'))
model.a(chǎn)dd(BatchNormalization())
model.a(chǎn)dd(Dropout(0.5))
model.a(chǎn)dd(Dense(classes, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.summary()
發(fā)表評(píng)論
請(qǐng)輸入評(píng)論內(nèi)容...
請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字
最新活動(dòng)更多
-
10月31日立即下載>> 【限時(shí)免費(fèi)下載】TE暖通空調(diào)系統(tǒng)高效可靠的組件解決方案
-
即日-11.13立即報(bào)名>>> 【在線(xiàn)會(huì)議】多物理場(chǎng)仿真助跑新能源汽車(chē)
-
11月28日立即報(bào)名>>> 2024工程師系列—工業(yè)電子技術(shù)在線(xiàn)會(huì)議
-
12月19日立即報(bào)名>> 【線(xiàn)下會(huì)議】OFweek 2024(第九屆)物聯(lián)網(wǎng)產(chǎn)業(yè)大會(huì)
-
即日-12.26火熱報(bào)名中>> OFweek2024中國(guó)智造CIO在線(xiàn)峰會(huì)
-
即日-2025.8.1立即下載>> 《2024智能制造產(chǎn)業(yè)高端化、智能化、綠色化發(fā)展藍(lán)皮書(shū)》
推薦專(zhuān)題
- 1 【一周車(chē)話(huà)】沒(méi)有方向盤(pán)和踏板的車(chē),你敢坐嗎?
- 2 特斯拉發(fā)布無(wú)人駕駛車(chē),還未迎來(lái)“Chatgpt時(shí)刻”
- 3 特斯拉股價(jià)大跌15%:Robotaxi離落地還差一個(gè)蘿卜快跑
- 4 馬斯克給的“驚喜”夠嗎?
- 5 打完“價(jià)格戰(zhàn)”,大模型還要比什么?
- 6 馬斯克致敬“國(guó)產(chǎn)蘿卜”?
- 7 神經(jīng)網(wǎng)絡(luò),誰(shuí)是盈利最強(qiáng)企業(yè)?
- 8 比蘋(píng)果偉大100倍!真正改寫(xiě)人類(lèi)歷史的智能產(chǎn)品降臨
- 9 諾獎(jiǎng)進(jìn)入“AI時(shí)代”,人類(lèi)何去何從?
- 10 Open AI融資后成萬(wàn)億獨(dú)角獸,AI人才之爭(zhēng)開(kāi)啟
- 高級(jí)軟件工程師 廣東省/深圳市
- 自動(dòng)化高級(jí)工程師 廣東省/深圳市
- 光器件研發(fā)工程師 福建省/福州市
- 銷(xiāo)售總監(jiān)(光器件) 北京市/海淀區(qū)
- 激光器高級(jí)銷(xiāo)售經(jīng)理 上海市/虹口區(qū)
- 光器件物理工程師 北京市/海淀區(qū)
- 激光研發(fā)工程師 北京市/昌平區(qū)
- 技術(shù)專(zhuān)家 廣東省/江門(mén)市
- 封裝工程師 北京市/海淀區(qū)
- 結(jié)構(gòu)工程師 廣東省/深圳市