如何構(gòu)建一個(gè) CNN 模型,以從圖像中對(duì)幼苗的種類(lèi)進(jìn)行分類(lèi)?
將 CNN 擬合到數(shù)據(jù)上
接下來(lái)是將 CNN 模型擬合到我們的數(shù)據(jù)集上,這樣模型將從訓(xùn)練數(shù)據(jù)集中學(xué)習(xí)并更新權(quán)重。這個(gè)經(jīng)過(guò)訓(xùn)練的 CNN 模型可以進(jìn)一步用于獲得對(duì)我們測(cè)試數(shù)據(jù)集的最終預(yù)測(cè)。我們必須遵循一些先決條件,例如降低學(xué)習(xí)率、找到模型的最佳權(quán)重并保存這些計(jì)算出的權(quán)重,以便我們可以進(jìn)一步使用它們進(jìn)行測(cè)試和獲得預(yù)測(cè)。
根據(jù)我們的常識(shí),我們需要以下內(nèi)容
模型的最佳權(quán)重
降低學(xué)習(xí)率
保存模型的最后權(quán)重
lrr = ReduceLROnPlateau(monitor='val_acc',
patience=3,
verbose=1,
factor=0.4,
min_lr=0.00001)
filepath="drive/DataScience/PlantReco/weights.best_{epoch:02d}-{val_acc:.2f}.hdf5"
checkpoints = ModelCheckpoint(filepath, monitor='val_acc',
verbose=1, save_best_only=True, mode='max')
filepath="drive/DataScience/PlantReco/weights.last_auto4.hdf5"
checkpoints_full = ModelCheckpoint(filepath, monitor='val_acc',
verbose=1, save_best_only=False, mode='max')
callbacks_list = [checkpoints, lrr, checkpoints_full]
#MODEL
# hist = model.fit_generator(datagen.flow(trainX, trainY, batch_size=75),
# epochs=35, validation_data=(testX, testY),
# steps_per_epoch=trainX.shape[0], callbacks=callbacks_list)
# LOADING MODEL
model.load_weights("../input/plantrecomodels/weights.best_17-0.96.hdf5")
dataset = np.load("../input/plantrecomodels/Data.npz")
data = dict(zip(("x_train","x_test","y_train", "y_test"), (dataset[k] for k in dataset)))
x_train = data['x_train']
x_test = data['x_test']
y_train = data['y_train']
y_test = data['y_test']
print(model.evaluate(x_train, y_train)) # Evaluate on train set
print(model.evaluate(x_test, y_test)) # Evaluate on test set
混淆矩陣
混淆矩陣是一種檢查我們的模型如何處理數(shù)據(jù)的方法。這是分析模型錯(cuò)誤的好方法。檢查以下代碼以獲取混淆矩陣
# PREDICTIONS
y_pred = model.predict(x_test)
y_class = np.a(chǎn)rgmax(y_pred, axis = 1)
y_check = np.a(chǎn)rgmax(y_test, axis = 1)
cmatrix = confusion_matrix(y_check, y_class)
print(cmatrix)
獲得預(yù)測(cè)
在最后一部分,我們將獲得對(duì)測(cè)試數(shù)據(jù)集的預(yù)測(cè)。
檢查以下代碼以使用經(jīng)過(guò)訓(xùn)練的模型獲取預(yù)測(cè)
path_to_test = '../input/plant-seedlings-classification/test.png'
pics = glob(path_to_test)
testimages = []
tests = []
count=1
num = len(pics)
for i in pics:
print(str(count)+'/'+str(num),end='r')
tests.a(chǎn)ppend(i.split('/')[-1])
testimages.a(chǎn)ppend(cv2.resize(cv2.imread(i),(scale,scale)))
count = count + 1
testimages = np.a(chǎn)sarray(testimages)
newtestimages = []
sets = []
getEx = True
for i in testimages:
blurr = cv2.GaussianBlur(i,(5,5),0)
hsv = cv2.cvtColor(blurr,cv2.COLOR_BGR2HSV)
lower = (25,40,50)
upper = (75,255,255)
mask = cv2.inRange(hsv,lower,upper)
struc = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(11,11))
mask = cv2.morphologyEx(mask,cv2.MORPH_CLOSE,struc)
boolean = mask>0
masking = np.zeros_like(i,np.uint8)
masking[boolean] = i[boolean]
newtestimages.a(chǎn)ppend(masking)
if getEx:
plt.subplot(2,3,1);plt.imshow(i)
plt.subplot(2,3,2);plt.imshow(blurr)
plt.subplot(2,3,3);plt.imshow(hsv)
plt.subplot(2,3,4);plt.imshow(mask)
plt.subplot(2,3,5);plt.imshow(boolean)
plt.subplot(2,3,6);plt.imshow(masking)
plt.show()
getEx=False
newtestimages = np.a(chǎn)sarray(newtestimages)
# OTHER MASKED IMAGES
for i in range(6):
plt.subplot(2,3,i+1)
plt.imshow(newtestimages[i])
Newtestimages=newtestimages/255
prediction = model.predict(newtestimages)
# PREDICTION TO A CSV FILE
pred = np.a(chǎn)rgmax(prediction,axis=1)
predStr = labels.classes_[pred]
result = {'file':tests,'species':predStr}
result = pd.DataFrame(result)
result.to_csv("Prediction.csv",index=False)、
尾注
所以在本文中,我們?cè)敿?xì)討論了使用 CNN進(jìn)行植物幼苗分類(lèi)。希望你能從文中學(xué)到一些東西,它會(huì)在未來(lái)對(duì)你有所幫助。
發(fā)表評(píng)論
請(qǐng)輸入評(píng)論內(nèi)容...
請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字
最新活動(dòng)更多
-
10月31日立即下載>> 【限時(shí)免費(fèi)下載】TE暖通空調(diào)系統(tǒng)高效可靠的組件解決方案
-
即日-11.13立即報(bào)名>>> 【在線(xiàn)會(huì)議】多物理場(chǎng)仿真助跑新能源汽車(chē)
-
11月28日立即報(bào)名>>> 2024工程師系列—工業(yè)電子技術(shù)在線(xiàn)會(huì)議
-
12月19日立即報(bào)名>> 【線(xiàn)下會(huì)議】OFweek 2024(第九屆)物聯(lián)網(wǎng)產(chǎn)業(yè)大會(huì)
-
即日-12.26火熱報(bào)名中>> OFweek2024中國(guó)智造CIO在線(xiàn)峰會(huì)
-
即日-2025.8.1立即下載>> 《2024智能制造產(chǎn)業(yè)高端化、智能化、綠色化發(fā)展藍(lán)皮書(shū)》
推薦專(zhuān)題
- 1 【一周車(chē)話(huà)】沒(méi)有方向盤(pán)和踏板的車(chē),你敢坐嗎?
- 2 特斯拉發(fā)布無(wú)人駕駛車(chē),還未迎來(lái)“Chatgpt時(shí)刻”
- 3 特斯拉股價(jià)大跌15%:Robotaxi離落地還差一個(gè)蘿卜快跑
- 4 馬斯克給的“驚喜”夠嗎?
- 5 打完“價(jià)格戰(zhàn)”,大模型還要比什么?
- 6 馬斯克致敬“國(guó)產(chǎn)蘿卜”?
- 7 神經(jīng)網(wǎng)絡(luò),誰(shuí)是盈利最強(qiáng)企業(yè)?
- 8 比蘋(píng)果偉大100倍!真正改寫(xiě)人類(lèi)歷史的智能產(chǎn)品降臨
- 9 諾獎(jiǎng)進(jìn)入“AI時(shí)代”,人類(lèi)何去何從?
- 10 Open AI融資后成萬(wàn)億獨(dú)角獸,AI人才之爭(zhēng)開(kāi)啟
- 高級(jí)軟件工程師 廣東省/深圳市
- 自動(dòng)化高級(jí)工程師 廣東省/深圳市
- 光器件研發(fā)工程師 福建省/福州市
- 銷(xiāo)售總監(jiān)(光器件) 北京市/海淀區(qū)
- 激光器高級(jí)銷(xiāo)售經(jīng)理 上海市/虹口區(qū)
- 光器件物理工程師 北京市/海淀區(qū)
- 激光研發(fā)工程師 北京市/昌平區(qū)
- 技術(shù)專(zhuān)家 廣東省/江門(mén)市
- 封裝工程師 北京市/海淀區(qū)
- 結(jié)構(gòu)工程師 廣東省/深圳市