訂閱
糾錯(cuò)
加入自媒體

基于Spark的數(shù)據(jù)分析實(shí)踐

2019-06-19 09:55
EAWorld
關(guān)注

對(duì)RegisterDataFrameAsTable的分析

通過單個(gè) regiserDataFrameAsTable 項(xiàng)進(jìn)行分析,SparkSQL 并不是把source 的數(shù)據(jù)立即計(jì)算把數(shù)據(jù)放到內(nèi)存,而是每次執(zhí)行 source 時(shí)只是生成了一個(gè) Logical Plan,只有遇到需要提交的算子(Action),SparkSQL 才會(huì)觸發(fā)前面所依賴的的 plan 執(zhí)行。

總結(jié)

這是一個(gè)開發(fā)框架,不是一個(gè)成熟的產(chǎn)品,也不是一種架構(gòu)。他只是基于 SparkSQL 整合了大多數(shù)的外部系統(tǒng),能通過 XML 的模板配置完成數(shù)據(jù)開發(fā)。面向的是理解數(shù)據(jù)業(yè)務(wù)但不了解 Spark 的數(shù)據(jù)開發(fā)人員。整個(gè)框架完成了大多數(shù)的外部系統(tǒng)對(duì)接,開發(fā)者只需要使用 type 獲得數(shù)據(jù),完成數(shù)據(jù)開發(fā)后通過 target 回寫到目標(biāo)系統(tǒng)中。整個(gè)過程基本無須程序開發(fā),除非當(dāng)前的 SQL 函數(shù)無法滿足使用的情況下,需要自行開發(fā)一下特定的 UDF。因此本框架在對(duì) SparkSQL 做了二次開發(fā)基礎(chǔ)上,大大簡化了 Spark 的開發(fā),可降低了開發(fā)者使用難度。

精選提問:

問1:和Fink平臺(tái)有什么優(yōu)勢么?

答:Flink 應(yīng)該對(duì)標(biāo) Spark Streaming 的解決方案,是另一種可選流數(shù)據(jù)引擎。Flink 也采用了 Scala 語言,內(nèi)部原理和操作數(shù)據(jù)方式頗有相似之處,是 SparkStreaming 之外流數(shù)據(jù)處理一種選型; SparkSQL Flow 的架構(gòu)主要側(cè)重批量數(shù)據(jù)分析,非實(shí)時(shí) ETL 方面。

問2:這些應(yīng)該是源數(shù)據(jù)庫吧,請(qǐng)問目標(biāo)數(shù)據(jù)庫支持哪些?

答:目前的實(shí)現(xiàn)目標(biāo)數(shù)據(jù)基本支持所有的源。

問3:你們產(chǎn)品是軟件開發(fā)平臺(tái),spark和你們開發(fā)平臺(tái)啥關(guān)系?

答:普元針對(duì)部分成熟場景提供了一些開發(fā)平臺(tái)和工具,也在參與了一些大數(shù)據(jù)項(xiàng)目建設(shè)。對(duì)于大規(guī)模數(shù)據(jù)的數(shù)據(jù)報(bào)表,數(shù)據(jù)質(zhì)量分析也需要適應(yīng)大數(shù)據(jù)的技術(shù)場景,Spark 作為Hadoop 內(nèi)比較成熟的解決方案,因此作為主要的選型工具。在參與部分項(xiàng)目實(shí)施過程中,通過對(duì)一些開發(fā)中的痛點(diǎn)針對(duì)性的提取了應(yīng)用框架。

問4:對(duì)于ETL中存在的merge、update的數(shù)據(jù)匹配、整合處理,Spark SQL Flow有沒有好的解決方法?

答:merge 和 update 在數(shù)據(jù)開發(fā)過程不可避免,往往對(duì)數(shù)據(jù)庫造成較大壓力。大數(shù)據(jù)場景下不建議逐條對(duì)數(shù)據(jù)做 update 操作,更好的辦法是在數(shù)據(jù)處理階段通過 join 把結(jié)果集在寫入目標(biāo)前準(zhǔn)備好,統(tǒng)一一次性寫入到目標(biāo)數(shù)據(jù)庫。查詢操作通過換庫使用新庫,這中操作一般適合數(shù)據(jù)量比較大,數(shù)據(jù)更新頻率較低的情況。如果目標(biāo)庫是 HBase 或者其他 MPP 類基于列式的數(shù)據(jù)庫,適當(dāng)?shù)目梢愿隆5钱?dāng)每天有 60% 以上的數(shù)據(jù)都需要更新時(shí),建議還是一次性生成新表。

問5: blink和flink 應(yīng)該如何選?

答:blink 是阿里巴巴在 flink 基礎(chǔ)上做了部分場景優(yōu)化(只是部分社區(qū)有介紹,并不明確)并且開源,但是考慮到國內(nèi)這些機(jī)構(gòu)開源往往是沒有持久動(dòng)力的。要看采用 Blink 是否用了比較關(guān)鍵的特性。也有消息說 Blink 和 Flink 會(huì)合并,畢竟阿里 Dubbo 前期自己發(fā)展,后期還是捐給了 Apache,因此兩者合并也是有可能。建議選型 Flink。

問6:etl 同步數(shù)據(jù)中主要用哪些工具?

答:這個(gè)要區(qū)分場景。傳統(tǒng)數(shù)據(jù)庫之間,可采用日志同步,也有部分成熟的工具;

傳統(tǒng)數(shù)據(jù)庫和Hadoop 生態(tài)內(nèi)(HBase,HIVE) 同步可使用 apache sqoop。 SparkSQL Flow 可以作為數(shù)據(jù)同步的另一種方案,可用在實(shí)時(shí)性不高的場景。SparkSQL Flow 更側(cè)重大數(shù)據(jù)工具,偏向數(shù)據(jù)分析和非實(shí)時(shí) ETL。

<上一頁  1  2  3  4  
聲明: 本文由入駐維科號(hào)的作者撰寫,觀點(diǎn)僅代表作者本人,不代表OFweek立場。如有侵權(quán)或其他問題,請(qǐng)聯(lián)系舉報(bào)。

發(fā)表評(píng)論

0條評(píng)論,0人參與

請(qǐng)輸入評(píng)論內(nèi)容...

請(qǐng)輸入評(píng)論/評(píng)論長度6~500個(gè)字

您提交的評(píng)論過于頻繁,請(qǐng)輸入驗(yàn)證碼繼續(xù)

  • 看不清,點(diǎn)擊換一張  刷新

暫無評(píng)論

暫無評(píng)論

人工智能 獵頭職位 更多
掃碼關(guān)注公眾號(hào)
OFweek人工智能網(wǎng)
獲取更多精彩內(nèi)容
文章糾錯(cuò)
x
*文字標(biāo)題:
*糾錯(cuò)內(nèi)容:
聯(lián)系郵箱:
*驗(yàn) 證 碼:

粵公網(wǎng)安備 44030502002758號(hào)